OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 31, Iss. 8 — Aug. 1, 2014
  • pp: 1811–1819

Electromagnetic energy within coated cylinders at oblique incidence and applications to graphene coatings

Tiago José Arruda, Alexandre Souto Martinez, and Felipe A. Pinheiro  »View Author Affiliations

JOSA A, Vol. 31, Issue 8, pp. 1811-1819 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (688 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We address electromagnetic (EM) wave scattering by an infinite coated cylinder at an arbitrary incidence angle. The time-averaged EM energy stored inside the core-shell cylinder is analytically calculated for TM- and TE-polarized incident plane waves. An analytical expression relating the internal energy to the absorption cross section is derived. As an application, the EM energy inside dielectric cylinders coated with isotropic graphene layers epitaxially grown on silicon carbide (SiC) is studied. We find that off-resonance field enhancement occurs in graphene SiC microshells for TM-polarized terahertz waves, a phenomenon that can be explained in terms of Fano resonances.

© 2014 Optical Society of America

OCIS Codes
(290.0290) Scattering : Scattering
(290.4020) Scattering : Mie theory
(290.5850) Scattering : Scattering, particles
(310.3915) Thin films : Metallic, opaque, and absorbing coatings
(290.5825) Scattering : Scattering theory

ToC Category:

Original Manuscript: May 7, 2014
Revised Manuscript: June 27, 2014
Manuscript Accepted: June 28, 2014
Published: July 24, 2014

Tiago José Arruda, Alexandre Souto Martinez, and Felipe A. Pinheiro, "Electromagnetic energy within coated cylinders at oblique incidence and applications to graphene coatings," J. Opt. Soc. Am. A 31, 1811-1819 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Rayleigh, “The dispersal of light by a dielectric cylinder,” Philos. Mag. 36(215), 365–376 (1918). [CrossRef]
  2. H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).
  3. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  4. B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103, 153901 (2009). [CrossRef]
  5. A. Alù, D. Rainwater, and A. Kerkhoff, “Plasmonic cloaking of cylinders: finite length, oblique illumination and cross-polarization coupling,” New J. Phys. 12, 103028 (2010). [CrossRef]
  6. W. J. M. Kort-Kamp, F. S. S. Rosa, F. A. Pinheiro, and C. Farina, “Tuning plasmonic cloaks with an external magnetic field,” Phys. Rev. Lett. 111, 215504 (2013). [CrossRef]
  7. J. R. Wait, “Scattering of a plane wave from a circular dielectric cylinder at oblique incidence,” Can. J. Phys. 33, 189–195 (1955). [CrossRef]
  8. A. C. Lind and J. M. Greenberg, “Electromagnetic scattering by obliquely oriented cylinders,” J. Appl. Phys. 37, 3195–3203 (1966). [CrossRef]
  9. M. Kerker and E. Matijevic, “Scattering of electromagnetic waves from concentric infinite cylinders,” J. Opt. Soc. Am. 51, 506–508 (1961). [CrossRef]
  10. G. A. Shah, “Scattering of plane electromagnetic waves by infinite concentric circular cylinders at oblique incidence,” Mon. Not. R. Astron. Soc. 148, 93–102 (1970).
  11. R. Ruppin, “Electromagnetic energy inside an irradiated cylinder,” J. Opt. Soc. Am. A 15, 1891–1895 (1998). [CrossRef]
  12. T. J. Arruda and A. S. Martinez, “Electromagnetic energy within a magnetic infinite cylinder and scattering properties for oblique incidence,” J. Opt. Soc. Am. A 27, 1679–1687 (2010). [CrossRef]
  13. A. Bott and W. Zdunkowski, “Electromagnetic energy within dielectric spheres,” J. Opt. Soc. Am. A 4, 1361–1365 (1987). [CrossRef]
  14. R. Ruppin, “Electromagnetic energy in dispersive spheres,” J. Opt. Soc. Am. A 15, 524–527 (1998). [CrossRef]
  15. T. J. Arruda and A. S. Martinez, “Electromagnetic energy within a magnetic sphere,” J. Opt. Soc. Am. A 27, 992–1001 (2010). [CrossRef]
  16. B. A. van Tiggelen, A. Lagendijk, M. P. van Albada, and A. Tip, “Speed of light in random media,” Phys. Rev. B 45, 12233–12243 (1992). [CrossRef]
  17. R. Ruppin, “Electric and magnetic energies within dispersive metamaterial spheres,” J. Opt. 13, 095101 (2011). [CrossRef]
  18. T. J. Arruda, F. A. Pinheiro, and A. S. Martinez, “Electromagnetic energy within coated spheres containing dispersive metamaterials,” J. Opt. 14, 065101 (2012). [CrossRef]
  19. T. J. Arruda, F. A. Pinheiro, and A. S. Martinez, “Electromagnetic energy within single-resonance chiral metamaterial spheres,” J. Opt. Soc. Am. A 30, 1205–1212 (2013). [CrossRef]
  20. A. E. Miroshnichenko, “Off-resonance field enhancement by spherical nanoshells,” Phys. Rev. A 81, 053818 (2010). [CrossRef]
  21. B. S. Luk’yanchuk, A. E. Miroshnichenko, and Y. S. Kivshar, “Fano resonances and topological optics: an interplay of far- and near-field interference phenomena,” J. Opt. 15, 073001 (2013). [CrossRef]
  22. M. I. Tribelsky, A. E. Miroshnichenko, and Y. S. Kivshar, “Unconventional Fano resonances in light scattering by small particles,” Europhys. Lett. 97, 44005 (2012). [CrossRef]
  23. T. J. Arruda, A. S. Martinez, and F. A. Pinheiro, “Unconventional Fano effect and off-resonance field enhancement in plasmonic coated spheres,” Phys. Rev. A 87, 043841 (2013). [CrossRef]
  24. H. L. Chen and L. Gao, “Tunablity of the unconventional Fano resonances in coated nanowires with radial anisotropy,” Opt. Express 21, 23619–23630 (2013). [CrossRef]
  25. U. Schroter and A. Dereux, “Surface plasmon polaritons on metal cylinders with dielectric core,” Phys. Rev. B 64, 125420 (2001). [CrossRef]
  26. Y. Jin, P. Zhang, and S. He, “Abnormal enhancement of electric field inside a thin permittivity-near-zero object in free space,” Phys. Rev. B 82, 075118 (2010). [CrossRef]
  27. I. Crassee, M. Orlita, M. Potemski, A. L. Walter, M. Ostler, Th. Seyller, I. Gaponenko, J. Chen, and A. B. Kuzmenko, “Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene,” Nano Lett. 12, 2470–2474 (2012). [CrossRef]
  28. S. Thongrattanasiri, F. H. L. Koppens, and F. J. G. de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108, 047401 (2012). [CrossRef]
  29. F. A. Pinheiro, A. S. Martinez, and L. C. Sampaio, “New effects in light scattering in disordered media and coherent backscattering cone: system of magnetic particles,” Phys. Rev. Lett. 84, 1435–1438 (2000). [CrossRef]
  30. F. A. Pinheiro, A. S. Martinez, and L. C. Sampaio, “Vanishing of energy transport velocity and diffusion constant of electromagnetic waves in disordered magnetic media,” Phys. Rev. Lett. 85, 5563–5566 (2000). [CrossRef]
  31. L. D. Landau and E. M. Lifshits, Electrodynamics of Continuous Media (Pergamon, 1984).
  32. G. N. Watson, A Treatise on the Theory of Bessel Functions (Cambridge University, 1958).
  33. P. W. Barber and S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, 1990).
  34. R. Loudon, “The propagation of electromagnetic energy through an absorbing dielectric,” J. Phys. A 3, 233–245 (1970). [CrossRef]
  35. R. Ruppin, “Electromagnetic energy density in a dispersive and absorptive material,” Phys. Lett. A 299, 309–312 (2002). [CrossRef]
  36. L. Gao and Y. Huang, “Extinction properties of a coated sphere containing a left-handed material,” Opt. Commun. 239, 25–31 (2004). [CrossRef]
  37. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited