OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 31, Iss. 8 — Aug. 1, 2014
  • pp: 1820–1831

Fast high-order perturbation of surfaces methods for simulation of multilayer plasmonic devices and metamaterials

David P. Nicholls, Fernando Reitich, Timothy W. Johnson, and Sang-Hyun Oh  »View Author Affiliations


JOSA A, Vol. 31, Issue 8, pp. 1820-1831 (2014)
http://dx.doi.org/10.1364/JOSAA.31.001820


View Full Text Article

Enhanced HTML    Acrobat PDF (713 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The scattering of time-harmonic linear waves by periodic media arises in a wide array of applications from materials science and nondestructive testing to remote sensing and oceanography. In this work we have in mind applications in optics, more specifically plasmonics, and the surface plasmon polaritons that are at the heart of remarkable phenomena such as extraordinary optical transmission, surface-enhanced Raman scattering, and surface plasmon resonance biosensing. In this paper we develop robust, highly accurate, and extremely rapid numerical solvers for approximating solutions to grating scattering problems in the frequency regime where these are commonly used. For piecewise-constant dielectric constants, which are commonplace in these applications, surface formulations are clearly advantaged as they posit unknowns supported solely at the material interfaces. The algorithms we develop here are high-order perturbation of surfaces methods and generalize previous approaches to take advantage of the fact that these algorithms can be significantly accelerated when some or all of the interfaces are trivial (flat). More specifically, for configurations with one nontrivial interface (and one trivial interface) we describe an algorithm that has the same computational complexity as a two-layer solver. With numerical simulations and comparisons with experimental data, we demonstrate the speed, accuracy, and applicability of our new algorithms.

© 2014 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(050.1755) Diffraction and gratings : Computational electromagnetic methods

ToC Category:
Optics at Surfaces

History
Original Manuscript: April 4, 2014
Revised Manuscript: June 20, 2014
Manuscript Accepted: June 27, 2014
Published: July 24, 2014

Citation
David P. Nicholls, Fernando Reitich, Timothy W. Johnson, and Sang-Hyun Oh, "Fast high-order perturbation of surfaces methods for simulation of multilayer plasmonic devices and metamaterials," J. Opt. Soc. Am. A 31, 1820-1831 (2014)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-31-8-1820


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Godrèche, ed., Solids Far from Equilibrium (Cambridge University, 1992).
  2. P. J. Shull, Nondestructive Evaluation: Theory, Techniques, and Applications (Marcel Dekker, 2002).
  3. L. Tsang, J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing (Wiley, 1985).
  4. L. M. Brekhovskikh and Y. P. Lysanov, Fundamentals of Ocean Acoustics (Springer-Verlag, 1982).
  5. H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296, 56–62 (2007). [CrossRef]
  6. L. Novotny and B. Hecht, Principles of Nano-Optics, 2nd ed. (Cambridge University, 2012).
  7. T. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998). [CrossRef]
  8. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010). [CrossRef]
  9. M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985). [CrossRef]
  10. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 462–493 (2008). [CrossRef]
  11. S. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  12. S. Enoch and N. Bonod, Plasmonics: From Basics to Advanced Topics, Springer Series in Optical Sciences (Springer, 2012).
  13. G. Veronis and S. Fan, “Overview of simulation techniques for plasmonic devices,” in Surface Plasmon Nanophotonics, Vol. 131 of Springer Series in Optical Sciences (Springer, 2007), pp. 169–182.
  14. A. M. Kern and O. J. F. Martin, “Surface integral formulation for 3D simulations of plasmonic and high permittivity nanostructures,” J. Opt. Soc. Am. A 26, 732–740 (2009). [CrossRef]
  15. F. Reitich and K. Tamma, “State-of-the-art, trends, and directions in computational electromagnetics,” CMES Comput. Model. Eng. Sci. 5, 287–294 (2004).
  16. H. Kurkcu and F. Reitich, “Stable and efficient evaluation of periodized Green’s functions for the Helmholtz equation at high frequencies,” J. Comput. Phys. 228, 75–95 (2009). [CrossRef]
  17. L. Rayleigh, “On the dynamical theory of gratings,” Proc. R. Soc. A 79, 399–416 (1907). [CrossRef]
  18. S. O. Rice, “Reflection of electromagnetic waves from slightly rough surfaces,” Commun. Pure Appl. Math. 4, 351–378 (1951). [CrossRef]
  19. O. P. Bruno and F. Reitich, “Numerical solution of diffraction problems: a method of variation of boundaries,” J. Opt. Soc. Am. A 10, 1168–1175 (1993). [CrossRef]
  20. O. P. Bruno and F. Reitich, “Numerical solution of diffraction problems: a method of variation of boundaries. II. Finitely conducting gratings, Padé approximants, and singularities,” J. Opt. Soc. Am. A 10, 2307–2316 (1993). [CrossRef]
  21. O. P. Bruno and F. Reitich, “Numerical solution of diffraction problems: a method of variation of boundaries. III. Doubly periodic gratings,” J. Opt. Soc. Am. A 10, 2551–2562 (1993). [CrossRef]
  22. D. P. Nicholls and F. Reitich, “Shape deformations in rough surface scattering: cancellations, conditioning, and convergence,” J. Opt. Soc. Am. A 21, 590–605 (2004). [CrossRef]
  23. D. P. Nicholls and F. Reitich, “Shape deformations in rough surface scattering: improved algorithms,” J. Opt. Soc. Am. A 21, 606–621 (2004). [CrossRef]
  24. D. P. Nicholls and F. Reitich, “Boundary perturbation methods for high-frequency acoustic scattering: shallow periodic gratings,” J. Acoust. Soc. Am. 123, 2531–2541 (2008). [CrossRef]
  25. A. Malcolm and D. P. Nicholls, “A field expansions method for scattering by periodic multilayered media,” J. Acoust. Soc. Am. 129, 1783–1793 (2011). [CrossRef]
  26. D. P. Nicholls, “Efficient enforcement of far-field boundary conditions in the transformed field expansions method,” J. Comput. Phys. 230, 8290–8303 (2011). [CrossRef]
  27. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  28. D. P. Nicholls and F. Reitich, “A new approach to analyticity of Dirichlet-Neumann operators,” Proc. R. Soc. Edinburgh Sect. A 131, 1411–1433 (2001).
  29. O. P. Bruno and F. Reitich, “Boundary-variation solutions for bounded-obstacle scattering problems in three dimensions,” J. Acoust. Soc. Am. 104, 2579–2583 (1998). [CrossRef]
  30. O. P. Bruno and F. Reitich, “Solution of a boundary value problem for the Helmholtz equation via variation of the boundary into the complex domain,” Proc. R. Soc. Edinburgh Sect. A 122, 317–340 (1992).
  31. B. Hu and D. P. Nicholls, “Analyticity of Dirichlet–Neumann operators on Hölder and Lipschitz domains,” SIAM J. Math. Anal. 37, 302–320 (2005). [CrossRef]
  32. B. Hu and D. P. Nicholls, “The domain of analyticity of Dirichlet–Neumann operators,” Proc. R. Soc. Edinburgh Sect. A 140, 367–389 (2010).
  33. D. P. Nicholls and F. Reitich, “Analytic continuation of Dirichlet-Neumann operators,” Numer. Math. 94, 107–146 (2003). [CrossRef]
  34. J. Chandezon, D. Maystre, and G. Raoult, “A new theoretical method for diffraction gratings and its numerical application,” J. Opt. 11, 235–241 (1980). [CrossRef]
  35. N. A. Phillips, “A coordinate system having some special advantages for numerical forecasting,” J. Atmos. Sci. 14, 184–185 (1957).
  36. Y. He, D. P. Nicholls, and J. Shen, “An efficient and stable spectral method for electromagnetic scattering from a layered periodic structure,” J. Comput. Phys. 231, 3007–3022 (2012). [CrossRef]
  37. D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 2nd ed. (Springer-Verlag, 1998).
  38. D. Gottlieb and S. A. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications, Vol. 26 of CBMS-NSF Regional Conference Series in Applied Mathematics (Society for Industrial and Applied Mathematics, 1977).
  39. D. P. Nicholls and F. Reitich, “Stability of high-order perturbative methods for the computation of Dirichlet-Neumann operators,” J. Comput. Phys. 170, 276–298 (2001). [CrossRef]
  40. G. A. Baker and P. Graves-Morris, Padé Approximants, 2nd ed. (Cambridge University, 1996).
  41. C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers, International Series in Pure and Applied Mathematics (McGraw-Hill, 1978).
  42. N. C. Lindquist, T. W. Johnson, J. Jose, L. M. Otto, and S.-H. Oh, “Ultrasmooth metallic films with buried nanostructures for backside reflection-mode plasmonic biosensing,” Ann. Phys. 524, 687–696 (2012). [CrossRef]
  43. T. Xu, A. Agarwal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497, 470–474 (2013). [CrossRef]
  44. A. Rakic, A. Djurisic, J. Elazar, and M. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998). [CrossRef]
  45. H. Im, N. C. Lindquist, A. Lesuffleur, and S.-H. Oh, “Atomic layer deposition of dielectric overlayers for enhancing the optical properties and chemical stability of plasmonic nanoholes,” ACS Nano 4, 947–954 (2010). [CrossRef]
  46. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008). [CrossRef]
  47. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010). [CrossRef]
  48. N. C. Lindquist, W. A. Luhman, S.-H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93, 123308 (2008). [CrossRef]
  49. D. P. Nicholls, “Three-dimensional acoustic scattering by layered media: a novel surface formulation with operator expansions implementation,” Proc. R. Soc. A 468, 731–758 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited