OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 31, Iss. 8 — Aug. 1, 2014
  • pp: 1820–1831

Fast high-order perturbation of surfaces methods for simulation of multilayer plasmonic devices and metamaterials

David P. Nicholls, Fernando Reitich, Timothy W. Johnson, and Sang-Hyun Oh  »View Author Affiliations


JOSA A, Vol. 31, Issue 8, pp. 1820-1831 (2014)
http://dx.doi.org/10.1364/JOSAA.31.001820


View Full Text Article

Enhanced HTML    Acrobat PDF (713 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The scattering of time-harmonic linear waves by periodic media arises in a wide array of applications from materials science and nondestructive testing to remote sensing and oceanography. In this work we have in mind applications in optics, more specifically plasmonics, and the surface plasmon polaritons that are at the heart of remarkable phenomena such as extraordinary optical transmission, surface-enhanced Raman scattering, and surface plasmon resonance biosensing. In this paper we develop robust, highly accurate, and extremely rapid numerical solvers for approximating solutions to grating scattering problems in the frequency regime where these are commonly used. For piecewise-constant dielectric constants, which are commonplace in these applications, surface formulations are clearly advantaged as they posit unknowns supported solely at the material interfaces. The algorithms we develop here are high-order perturbation of surfaces methods and generalize previous approaches to take advantage of the fact that these algorithms can be significantly accelerated when some or all of the interfaces are trivial (flat). More specifically, for configurations with one nontrivial interface (and one trivial interface) we describe an algorithm that has the same computational complexity as a two-layer solver. With numerical simulations and comparisons with experimental data, we demonstrate the speed, accuracy, and applicability of our new algorithms.

© 2014 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(050.1755) Diffraction and gratings : Computational electromagnetic methods

ToC Category:
Optics at Surfaces

History
Original Manuscript: April 4, 2014
Revised Manuscript: June 20, 2014
Manuscript Accepted: June 27, 2014
Published: July 24, 2014

Citation
David P. Nicholls, Fernando Reitich, Timothy W. Johnson, and Sang-Hyun Oh, "Fast high-order perturbation of surfaces methods for simulation of multilayer plasmonic devices and metamaterials," J. Opt. Soc. Am. A 31, 1820-1831 (2014)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-31-8-1820

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited