OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 31, Iss. 8 — Aug. 1, 2014
  • pp: 1832–1841

Numerical solution of nonparaxial scalar diffraction integrals for focused fields

Matthias Hillenbrand, Damien P. Kelly, and Stefan Sinzinger  »View Author Affiliations


JOSA A, Vol. 31, Issue 8, pp. 1832-1841 (2014)
http://dx.doi.org/10.1364/JOSAA.31.001832


View Full Text Article

Enhanced HTML    Acrobat PDF (1831 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we present sampling conditions for fast-Fourier-transform-based field propagations. The input field and the propagation kernel are analyzed in a combined manner to derive sampling criteria that guarantee accurate calculation results in the output plane. These sampling criteria are also applicable to the propagation of general fields. For focal field calculations, geometrical optics is used to obtain a priori knowledge about the input and output fields. This a priori knowledge is used to determine an optimum balance between computational load and calculation accuracy. In a numerical example, correct results are obtained even though both the input field and the propagation kernel are sampled below the Nyquist rate. Finally, we show how chirp z-transform-based zoom-algorithms may be analyzed using the same techniques.

© 2014 Optical Society of America

OCIS Codes
(050.1960) Diffraction and gratings : Diffraction theory
(110.2990) Imaging systems : Image formation theory
(220.0220) Optical design and fabrication : Optical design and fabrication
(220.2560) Optical design and fabrication : Propagating methods

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: May 7, 2014
Revised Manuscript: June 27, 2014
Manuscript Accepted: June 27, 2014
Published: July 28, 2014

Citation
Matthias Hillenbrand, Damien P. Kelly, and Stefan Sinzinger, "Numerical solution of nonparaxial scalar diffraction integrals for focused fields," J. Opt. Soc. Am. A 31, 1832-1841 (2014)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-31-8-1832


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. J. Stamnes, Waves in Focal Regions: Propagation, Diffraction and Focusing of Light, Sound and Water Waves, Adam Hilger Series on Optics and Optoelectronics (Hilger, 1986).
  2. J. J. Braat, S. van Haver, A. J. Janssen, and P. Dirksen, “Assessment of optical systems by means of point-spread functions,” Prog. Opt. 51, 349–468 (2008). [CrossRef]
  3. T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods (Wiley-VCH, 2005).
  4. U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, 2005).
  5. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts, 2005).
  6. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 2008).
  7. D. P. Kelly, N. Sabitov, T. Meinecke, and S. Sinzinger, “Some considerations when numerically calculating diffraction patterns,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2011), paper DTuC5.
  8. T. M. Kreis, M. Adams, and W. P. O. Jüptner, “Methods of digital holography: a comparison,” Proc. SPIE 3098, 224–233 (1997). [CrossRef]
  9. N. Delen and B. Hooker, “Free-space beam propagation between arbitrarily oriented planes based on full diffraction theory: a fast Fourier transform approach,” J. Opt. Soc. Am. A 15, 857–867 (1998). [CrossRef]
  10. F. B. Shen and A. B. Wang, “Fast-Fourier-transform based numerical integration method for the Rayleigh–Sommerfeld diffraction formula,” Appl. Opt. 45, 1102–1110 (2006). [CrossRef]
  11. E. O. Brigham, The Fast Fourier Transform and Its Applications, Prentice-Hall Signal Processing Series (Prentice Hall, 1988).
  12. L. Onural, “Sampling of the diffraction field,” Appl. Opt. 39, 5929–5935 (2000). [CrossRef]
  13. L. Onural, “Exact analysis of the effects of sampling of the scalar diffraction field,” J. Opt. Soc. Am. A 24, 359–367 (2007). [CrossRef]
  14. D. G. Voelz and M. C. Roggemann, “Digital simulation of scalar optical diffraction: revisiting chirp function sampling criteria and consequences,” Appl. Opt. 48, 6132–6142 (2009). [CrossRef]
  15. P. Picart and P. Tankam, “Analysis and adaptation of convolution algorithms to reconstruct extended objects in digital holography,” Appl. Opt. 52, A240–A253 (2013). [CrossRef]
  16. S. Odate, C. Koike, H. Toba, T. Koike, A. Sugaya, K. Sugisaki, K. Otaki, and K. Uchikawa, “Angular spectrum calculations for arbitrary focal length with a scaled convolution,” Opt. Express 19, 14268–14276 (2011). [CrossRef]
  17. D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun. 164, 233–245 (1999). [CrossRef]
  18. K. Matsushima and T. Shimobaba, “Band-limited angular spectrum method for numerical simulation of free-space propagation in far and near fields,” Opt. Express 17, 19662–19673 (2009). [CrossRef]
  19. A. Stern and B. Javidi, “Sampling in the light of Wigner distribution,” J. Opt. Soc. Am. A 21, 360–366 (2004). [CrossRef]
  20. T. Kozacki, K. Falaggis, and M. Kujawinska, “Computation of diffracted fields for the case of high numerical aperture using the angular spectrum method,” Appl. Opt. 51, 7080–7088 (2012). [CrossRef]
  21. D. P. Kelly, W. T. Rhodes, J. T. Sheridan, and B. M. Hennelly, “Analytical and numerical analysis of linear optical systems,” Opt. Eng. 45, 088201 (2006). [CrossRef]
  22. D. P. Kelly, “Numerical calculation of the Fresnel transform,” J. Opt. Soc. Am. A 31, 755–764 (2014). [CrossRef]
  23. A. W. Lohmann, R. G. Dorsch, D. Mendlovic, Z. Zalevsky, and C. Ferreira, “Space–bandwidth product of optical signals and systems,” J. Opt. Soc. Am. A 13, 470–473 (1996). [CrossRef]
  24. D. Mas, J. Pérez, C. Hernández, C. Vázquez, J. J. Miret, and C. Illueca, “Fast numerical calculation of Fresnel patterns in convergent systems,” Opt. Commun. 227, 245–258 (2003). [CrossRef]
  25. L. R. Rabiner, R. W. Schafer, and C. M. Rader, “The chirp z-transform algorithm and its application,” Bell Syst. Tech. J. 48, 1249–1292 (1969). [CrossRef]
  26. L. Bluestein, “A linear filtering approach to the computation of discrete Fourier transform,” IEEE Trans. Audio Electroacoust. 18, 451–455 (1970). [CrossRef]
  27. V. Nascov and P. C. Logofatu, “Fast computation algorithm for the Rayleigh–Sommerfeld diffraction formula using a type of scaled convolution,” Appl. Opt. 48, 4310–4319 (2009). [CrossRef]
  28. J.-C. Li, P. Tankam, Z.-J. Peng, and P. Picart, “Digital holographic reconstruction of large objects using a convolution approach and adjustable magnification,” Opt. Lett. 34, 572–574 (2009). [CrossRef]
  29. X. Yu, T. Xiahui, Q. Yingxiong, P. Hao, and W. Wei, “Band-limited angular spectrum numerical propagation method with selective scaling of observation window size and sample number,” J. Opt. Soc. Am. A 29, 2415–2420 (2012). [CrossRef]
  30. T. Shimobaba, K. Matsushima, T. Kakue, N. Masuda, and T. Ito, “Scaled angular spectrum method,” Opt. Lett. 37, 4128–4130 (2012). [CrossRef]
  31. B. M. Hennelly, D. P. Kelly, D. S. Monaghan, and N. Pandey, “Zoom algorithms for digital holography,” in Information Optics and Photonics, B. Javidi and T. Fournel, eds. (Springer, 2010), pp. 187–204.
  32. M. Hillenbrand, A. Hoffmann, D. P. Kelly, and S. Sinzinger, “Fast nonparaxial scalar focal field calculations,” J. Opt. Soc. Am. A 31, 1206–1214 (2014). [CrossRef]
  33. G. C. Sherman, “Application of the convolution theorem to Rayleigh’s integral formulas,” J. Opt. Soc. Am. 57, 546–547 (1967). [CrossRef]
  34. D. Mendlovic and A. W. Lohmann, “Space–bandwidth product adaptation and its application to superresolution: fundamentals,” J. Opt. Soc. Am. A 14, 558–562 (1997). [CrossRef]
  35. D. Mendlovic, A. W. Lohmann, and Z. Zalevsky, “Space–bandwidth product adaptation and its application to superresolution: examples,” J. Opt. Soc. Am. A 14, 563–567 (1997). [CrossRef]
  36. F. Zhang, G. Pedrini, and W. Osten, “Reconstruction algorithm for high-numerical-aperture holograms with diffraction-limited resolution,” Opt. Lett. 31, 1633–1635 (2006). [CrossRef]
  37. A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, 3rd ed. (Pearson, 2010).
  38. D. P. Kelly, J. T. Sheridan, and W. T. Rhodes, “Finite-aperture effects for Fourier transform systems with convergent illumination. part I: 2-D system analysis,” Opt. Commun. 263, 171–179 (2006). [CrossRef]
  39. D. P. Kelly, B. M. Hennelly, J. T. Sheridan, and W. T. Rhodes, “Finite-aperture effects for Fourier transform systems with convergent illumination. part II: 3-D system analysis,” Opt. Commun. 263, 180–188 (2006). [CrossRef]
  40. T. Kozacki, “Numerical errors of diffraction computing using plane wave spectrum decomposition,” Opt. Commun. 281, 4219–4223 (2008). [CrossRef]
  41. D. P. Kelly, T. J. Naughton, W. T. Rhodes, B. M. Hennelly, and N. Pandey, “Resolution limits in practical digital holographic systems,” Opt. Eng. 48, 095801 (2009). [CrossRef]
  42. L. F. Shampine, “MATLAB program for quadrature in 2D,” Appl. Math. Comput. 202, 266–274 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited