OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 31, Iss. 8 — Aug. 1, 2014
  • pp: 1856–1860

Plasmonic corrugated cylinder–cone terahertz probe

Haizi Yao and Shuncong Zhong  »View Author Affiliations

JOSA A, Vol. 31, Issue 8, pp. 1856-1860 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (494 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The spoof surface plasmon polariton (SPP) effect on the electromagnetic field distribution near the tip of a periodically corrugated metal cylinder–cone probe working at the terahertz regime was studied. We found that radially polarized terahertz radiation could be coupled effectively through a spoof SPP into a surface wave and propagated along the corrugated surface, resulting in more than 20× electric field enhancement near the tip of probe. Multiple resonances caused by the antenna effect were discussed in detail by finite element computation and theoretical analysis of dispersion relation for spoof SPP modes. Moreover, the key figures of merit such as the resonance frequency of the SPP can be flexibly tuned by modifying the geometry of the probe structure, making it attractive for application in an apertureless background-free terahertz near-field microscope.

© 2014 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(240.6680) Optics at surfaces : Surface plasmons
(110.6795) Imaging systems : Terahertz imaging

ToC Category:
Imaging Systems

Original Manuscript: May 22, 2014
Manuscript Accepted: July 2, 2014
Published: July 29, 2014

Haizi Yao and Shuncong Zhong, "Plasmonic corrugated cylinder–cone terahertz probe," J. Opt. Soc. Am. A 31, 1856-1860 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86, 241116 (2005). [CrossRef]
  2. R. K. May, K. Su, L. Han, S. Zhong, J. A. Elliott, L. F. Gladden, and J. A. Zeitler, “Hardness and density distributions of pharmaceutical tablets measured by terahertz pulsed imaging,” J. Pharm. Sci. 102, 2179–2186 (2013). [CrossRef]
  3. M. Walther, P. Plochocka, B. Fischer, H. Helm, and P. Uhd Jepsen, “Collective vibrational modes in biological molecules investigated by terahertz time-domain spectroscopy,” Biopolymers 67, 310–313 (2002). [CrossRef]
  4. E. Betzig and J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992). [CrossRef]
  5. R. Kersting, F. F. Buersgens, G. Acuna, and G. C. Cho, “Terahertz near-field microscopy,” in Advances in Solid State Physics (Springer, 2008), pp. 203–222.
  6. O. Mitrofanov, I. Brener, M. C. Wanke, R. R. Ruel, J. D. Wynn, A. J. Bruce, and J. Federici, “Near-field microscope probe for far infrared time domain measurements,” Appl. Phys. Lett. 77, 591–593 (2000). [CrossRef]
  7. Q. Chen, Z. Jiang, G. Xu, and X.-C. Zhang, “Near-field terahertz imaging with a dynamic aperture,” Opt. Lett. 25, 1122–1124 (2000). [CrossRef]
  8. J. Xu and X.-C. Zhang, “Optical rectification in an area with a diameter comparable to or smaller than the center wavelength of terahertz radiation,” Opt. Lett. 27, 1067–1069 (2002). [CrossRef]
  9. R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light–matter interaction at the nanometre scale,” Nature 418, 159–162 (2002). [CrossRef]
  10. Y. Inouye and S. Kawata, “Near-field scanning optical microscope with a metallic probe tip,” Opt. Lett. 19, 159–161 (1994). [CrossRef]
  11. P. Nordlander and F. Le, “Plasmonic structure and electromagnetic field enhancements in the metallic nanoparticle-film system,” Appl. Phys. B 84, 35–41 (2006).
  12. M. Esslinger, J. Dorfmuller, W. Khunsin, R. Vogelgesang, and K. Kern, “Background-free imaging of plasmonic structures with cross-polarized apertureless scanning near-field optical microscopy,” Rev. Sci. Instrum. 83, 033704 (2012). [CrossRef]
  13. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [CrossRef]
  14. H. Raether, Surface Plasmons on Smooth Surfaces (Springer, 1988).
  15. J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Non-diffraction-limited light transport by gold nanowires,” Europhys. Lett. 60, 663–669 (2002).
  16. E. Verhagen, A. Polman, and L. K. Kuipers, “Nanofocusing in laterally tapered plasmonic waveguides,” Opt. Express 16, 45–57 (2008). [CrossRef]
  17. V. Lotito, U. Sennhauser, and C. Hafner, “Effects of asymmetric surface corrugations on fully metal-coated scanning near field optical microscopy tips,” Opt. Express 18, 8722–8734 (2010). [CrossRef]
  18. S. Mononobe, T. Saiki, T. Suzuki, S. Koshihara, and M. Ohtsu, “Fabrication of a triple tapered probe for near-field optical spectroscopy in UV region based on selective etching of a multistep index fiber,” Opt. Commun. 146, 45–48 (1998). [CrossRef]
  19. C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-field localization in plasmonic superfocusing: a nanoemitter on a tip,” Nano Lett. 10, 592–596 (2010). [CrossRef]
  20. V. Trukhin, A. Golubok, and L. Samoilov, “Probe shape effect on near-field enhancement in apertureless terahertz near-field microscope,” in 36th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz) (IEEE, 2011), p. 1.
  21. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004). [CrossRef]
  22. F. Baida and A. Belkhir, “Superfocusing and light confinement by surface plasmon excitation through radially polarized beam,” Plasmonics 4, 51–59 (2009). [CrossRef]
  23. A. Fernández-Domínguez, L. Martín-Moreno, F. García-Vidal, S. R. Andrews, and S. Maier, “Spoof surface plasmon polariton modes propagating along periodically corrugated wires,” IEEE J. Sel. Top. Quantum Electron. 14, 1515–1521 (2008). [CrossRef]
  24. F. Garcia-Vidal, L. Martin-Moreno, and J. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A 7, S97–S101 (2005). [CrossRef]
  25. X. Zhang, L. Shen, J.-J. Wu, and T.-J. Yang, “Terahertz surface plasmon polaritons on a periodically structured metal film with high confinement and low loss,” J. Electromagn. Waves Appl. 23, 2451–2460 (2009).
  26. M. A. Ordal, R. J. Bell, R. Alexander, L. Long, and M. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt. 24, 4493–4499 (1985). [CrossRef]
  27. C. A. Balanis, Antenna Theory: Analysis and Design (Wiley, 2012).
  28. T. Jiang, L. Shen, X. Zhang, and L.-X. Ran, “High-order modes of spoof surface plasmon polaritons on periodically corrugated metal surfaces,” Prog. Electromagn. Res. 8, 91–102 (2009). [CrossRef]
  29. L. Shen, X. Chen, Y. Zhong, and K. Agarwal, “Effect of absorption on terahertz surface plasmon polaritons propagating along periodically corrugated metal wires,” Phys. Rev. B 77, 075408 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited