OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 31, Iss. 8 — Aug. 1, 2014
  • pp: 1876–1885

DLAB: a class of daylight-based uniform color space

Ying-Yi Li and Hsien-Che Lee  »View Author Affiliations

JOSA A, Vol. 31, Issue 8, pp. 1876-1885 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (931 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



CIELAB is based on the CIE 1931 color matching functions. If we are given a new set of color matching functions, how do we define a CIELAB-like uniform color space for the new functions? This problem arises because the CIE recommended its physiological cone fundamentals in 2006 and is considering a new set of color matching functions based on them. In fact, the same problem exists for many practical applications in digital imaging. Typical solutions involve using illuminant-dependent color correction matrices to transform the device-dependent color space into the CIE XYZ color space. This conversion process suffers information loss unless the two sets of color matching functions are linear combinations of each other. In this paper, we propose a design process that allows us to develop a CIELAB-like color space using the native sensor fundamentals. The basic idea is to choose the daylight locus as the yellow–blue opponent color process. We call this class of color space DLAB. We describe the design procedures and compare the resulting Munsell color uniformity under CIELAB (L*,a*,b*) and DLAB (L+,a+,b+).

© 2014 Optical Society of America

OCIS Codes
(110.0110) Imaging systems : Imaging systems
(330.0330) Vision, color, and visual optics : Vision, color, and visual optics
(330.1690) Vision, color, and visual optics : Color
(330.1710) Vision, color, and visual optics : Color, measurement
(330.1730) Vision, color, and visual optics : Colorimetry
(010.1690) Atmospheric and oceanic optics : Color

ToC Category:
Vision, Color, and Visual Optics

Original Manuscript: March 6, 2014
Revised Manuscript: June 27, 2014
Manuscript Accepted: July 7, 2014
Published: July 31, 2014

Virtual Issues
Vol. 9, Iss. 10 Virtual Journal for Biomedical Optics

Ying-Yi Li and Hsien-Che Lee, "DLAB: a class of daylight-based uniform color space," J. Opt. Soc. Am. A 31, 1876-1885 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. CIE, “Colorimetry,” 3rd ed., Tech. Rep., (CIE Central Bureau, 2004).
  2. H. Kivinen, M. Nuutinen, and P. Oittinen, “Comparison of colour difference methods for natural images,” in Proceedings of the 5th European Conference on Colour in Graphics, Imaging, and Vision (2010), pp. 510–515.
  3. E. Q. Adams, “X-Z planes in the 1931 I.C.I. system of colorimetry,” J. Opt. Soc. Am. 32, 168–173 (1942). [CrossRef]
  4. D. B. Judd, “Reduction of data on mixture of color stimuli,” Bur. Stand. J. Res. 4, 515–548 (1930). [CrossRef]
  5. D. B. Judd, “The 1931 I.C.I. standard observer and coordinate system for colorimetry,” J. Opt. Soc. Am. 23, 359–374 (1933). [CrossRef]
  6. W. N. Sproson, Colour Science in Television and Display Systems (Adam Hilger, 1982).
  7. CIE, “Fundamental chromaticity diagram with physiological axes—part 1,” Tech. Rep., (CIE Central Bureau, 2006).
  8. D. B. Judd, D. L. MacAdam, and G. W. Wyszecki, “Spectral distribution of typical daylight as a function of correlated color temperature,” J. Opt. Soc. Am. 54, 1031–1040 (1964). [CrossRef]
  9. H.-C. Lee, “A computational model for opponent color encoding,” Advanced Printing of Conference Summaries, SPSE’s 43rd Annual Conference, Rochester, 1990, pp. 178–181.
  10. H.-C. Lee, “A physics-based color encoding model for images of natural scenes,” Proceedings of the Conference on Modern Engineering and Technology, Electro-Optics Session, Taipei, Taiwan, 1992, pp. 25–52.
  11. S. Newhall, D. Nickerson, and D. B. Judd, “Final report of the O.S.A. subcommittee on the spacing of the Munsell colors,” J. Opt. Soc. Am. 33, 385–418 (1943). [CrossRef]
  12. A. Stockman, L. T. Sharpe, and C. Fach, “The spectral sensitivity of human short-wavelength sensitive cones derived from thresholds and color matches,” Vis. Res. 39, 2901–2927 (1999). [CrossRef]
  13. A. Stockman and L. T. Sharpe, “The spectral sensitivities of the middle- and the long-wavelength-sensitive cones derived from measurements in observers of known genotype,” Vis. Res. 40, 1711–1737 (2000). [CrossRef]
  14. J. Mollon, “Monge,” Vis. Neurosci. 23, 297–309 (2006). [CrossRef]
  15. A. Stockman and D. H. Brainard, “Color vision mechanisms,” in The OSA Handbook of Optics, M. Bass, ed., 3rd ed. (McGraw-Hill, 2010), pp. 11.1–11.104.
  16. R. T. Eskew, J. S. McLellan, and F. Giulianini, “Chromatic detection and discrimination,” in Color Vision: From Genes to Perception, K. R. Gegenfurtner and L. T. Sharpe, eds. (Cambridge University, 1999), pp. 345–368.
  17. R. N. Shepard, “The perceptual organization of colors: an adaptation to regularities of the terrestrial world,” in The Adapted Mind: Evolutionary Psychology and the Generation of Culture, J. H. Barkow, L. Cosmides, and J. Tooby, eds. (Oxford University, 1992), pp. 495–532.
  18. R. Lafer-Sousa, Y. O. Liu, L. Lafer-Sousa, M. C. Wiest, and B. R. Conway, “Color tuning in alert macaque V1 assessed with fMRI and single-unit recording shows a bias toward daylight colors,” J. Opt. Soc. Am. A 29, 657–670 (2012). [CrossRef]
  19. K. C. McDermott and M. A. Webster, “Uniform color spaces and natural image statistics,” J. Opt. Soc. Am. A 29, A182–A187 (2012). [CrossRef]
  20. A. Panorgias, J. J. Kulikowski, N. R. Parry, D. J. McKeefry, and I. J. Murray, “Phases of daylight and the stability of color perception in the near peripheral human retina,” J. Vis. 12(3), 1–11 (2012). [CrossRef]
  21. J. Jiang, D. Liu, J. Gu, and S. Süsstrunk, “What is the space of spectral sensitivity functions for digital color cameras?” IEEE Workshop on the Applications of Computer Vision, Tampa, 2013, pp. 168–179.
  22. H.-C. Lee, Introduction to Color Imaging Science (Cambridge University, 2005).
  23. N. Moroney, M. D. Fairchild, R. W. G. Hunt, C. Li, M. R. Luo, and T. Newman, “The CIECAM02 color appearance model,” Proceedings of the IS&T/SID 10th Color Imaging Conference, Scottsdale, 2002, pp. 23–27.
  24. G. D. Finlayson, M. S. Drew, and B. V. Funt, “Spectral sharpening: sensor transformations for improved color constancy,” J. Opt. Soc. Am. A 11, 1553–1563 (1994). [CrossRef]
  25. M. D. Fairchild, Color Appearance Models, 3rd ed. (Wiley, 2013).
  26. J. J. Vos, “From lower to higher colour metrics: a historical account,” Clin. Exp. Optom. 89, 348–360 (2006). [CrossRef]
  27. R. T. Eskew, “Higher order color mechanisms: a critical review,” Vis. Res. 49, 2686–2704 (2009). [CrossRef]
  28. D. L. MacAdam, “On the geometry of color space,” J. Franklin Inst. 238, 195–210 (1944). [CrossRef]
  29. D. B. Judd, “Ideal color space,” Color Eng. 8, 37–52 (1970).
  30. P. Lennie, J. Pokorny, and V. C. Smith, “Luminance,” J. Opt. Soc. Am. A 10, 1283–1293 (1993). [CrossRef]
  31. C. L. Sanders and G. Wyszecki, “Correlate for lightness in terms of CIE-tristimulus values. part I,” J. Opt. Soc. Am. 47, 398–404 (1957). [CrossRef]
  32. G. Wyszecki and C. L. Sanders, “Correlate for lightness in terms of CIE-tristimulus values. part II,” J. Opt. Soc. Am. 47, 840–842 (1957). [CrossRef]
  33. J. Hernández-Andrés, J. Romero, and J. L. Nieves, “Color and spectral analysis of daylight in southern Europe,” J. Opt. Soc. Am. A 18, 1325–1335 (2001). [CrossRef]
  34. D. H. Brainard and B. A. Wandell, “Asymmetric color matching: how color appearance depends on the illuminant,” J. Opt. Soc. Am. A 9, 1433–1448 (1992). [CrossRef]
  35. E. J. Chichilnisky and B. A. Wandell, “Photoreceptor sensitivity changes explain color appearance shifts induced by large uniform backgrounds in dichoptic matching,” Vis. Res. 35, 239–254 (1995). [CrossRef]
  36. CIE, “A review of chromatic adaptation transforms,” Tech. Rep., (CIE Central Bureau, 2004).
  37. E. P. Hornstein, J. Verweij, and J. L. Schnapf, “Electrical coupling between red and green cones in primate retina,” Nat. Neurosci. 7, 745–750 (2004). [CrossRef]
  38. http://www.uef.fi/fi/spectral/munsell-colors-matt-spectrofotometer-measured .
  39. M. W. Derhak and R. S. Berns, “Analysis and correction of the Joensuu Munsell glossy spectral database,” in Proceedings of the 20th Color and Imaging Conference (2012), pp. 191–194.
  40. http://www.rit.edu/cos/colorscience/rc_munsell_renotation.php .
  41. F. F. Ebner, “Derivation and modeling of hue uniformity and development of the IPT color space,” Ph.D. dissertation (Rochester Institute of Technology, 1998).
  42. R. G. Kuehni, “Towards an improved uniform color space,” Color Res. Appl. 24, 253–265 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited