OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 31, Iss. 9 — Sep. 1, 2014
  • pp: 1912–1918

Maximum absorption by homogeneous magneto-dielectric sphere

Michael Forum Palvig, Olav Breinbjerg, and Morten Willatzen  »View Author Affiliations

JOSA A, Vol. 31, Issue 9, pp. 1912-1918 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (989 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In order to obtain a benchmark for electromagnetic energy harvesting, we investigate the maximum absorption efficiency by a magneto-dielectric homogeneous sphere illuminated by a plane wave, and we arrive at several novel results. For electrically small spheres we show that the optimal relative permeability and permeability of materials where ϵr, μr1 is (1+i3) independent of sphere size, while that of metamaterials is (2+iδ), where the imaginary part δ decreases strongly with decreasing sphere size. For larger spheres we show that while maximum absorption efficiency occurs at the resonances of the spherical modes, there exists a wide plateau of high absorption efficiency when material intrinsic impedance is constant; in the case of free-space intrinsic impedance and electrical radius κ=1, the absorption efficiency becomes 2.8. The investigation is analytic/numerical and based on the Lorenz–Mie theory combined with the optical theorem.

© 2014 Optical Society of America

OCIS Codes
(290.2200) Scattering : Extinction
(290.4020) Scattering : Mie theory
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:

Original Manuscript: March 14, 2014
Revised Manuscript: July 17, 2014
Manuscript Accepted: July 17, 2014
Published: August 5, 2014

Virtual Issues
Vol. 9, Iss. 11 Virtual Journal for Biomedical Optics

Michael Forum Palvig, Olav Breinbjerg, and Morten Willatzen, "Maximum absorption by homogeneous magneto-dielectric sphere," J. Opt. Soc. Am. A 31, 1912-1918 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Li, L. Dai, and C. Jiang, “Design of efficient plasmonic thin-film solar cells based on mode splitting,” J. Opt. Soc. Am. B 28, 1793–1797 (2011). [CrossRef]
  2. A. M. Ionescu and C. Hierold, “Guardian angels for a smarter life: enabling a zero-power technological platform for autonomous smart systems,” Procedia Comput. Sci. 7, 43–46 (2011). [CrossRef]
  3. L. Lorenz, “Lysbevægelser i og uden for en af plane lysbølger belyst kugle,” Vidensk. Selsk. Skr. 6, 1–62 (1890).
  4. G. Mie, “Optics of turbid media,” Ann. Phys. 25, 377–445 (1908).
  5. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, 1969).
  6. H. van de Hulst, Light Scattering by Small Particles (Wiley, 1957).
  7. C. F. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  8. R. L. Heinisch, F. X. Bronold, and H. Fehske, “Mie scattering by a charged dielectric particle,” Phys. Rev. Lett. 109, 243903 (2012). [CrossRef]
  9. Y.-L. Geng, X.-B. Wu, L.-W. Li, and B.-R. Guan, “Mie scattering by a uniaxial anisotropic sphere,” Phys. Rev. E 70, 056609 (2004). [CrossRef]
  10. J. R. Frisvad, N. J. Christensen, and H. W. Jensen, “Computing the scattering properties of participating media using Lorenz-Mie theory,” ACM Trans. Graph. 26, 60 (2007). [CrossRef]
  11. M. Kerker, D.-S. Wang, and C. L. Giles, “Electromagnetic scattering by magnetic spheres,” J. Opt. Soc. Am. 73, 765–767 (1983). [CrossRef]
  12. A. E. Miroshnichenko, “Non-Rayleigh limit of the Lorenz-Mie solution and suppression of scattering by spheres of negative refractive index,” Phys. Rev. A 80, 013808 (2009). [CrossRef]
  13. T. J. Arruda and A. S. Martinez, “Electromagnetic energy within magnetic spheres,” J. Opt. Soc. Am. A 27, 992–1001 (2010). [CrossRef]
  14. M. Gustafsson, C. Sohl, and G. Kristensson, “Physical limitations on antennas of arbitrary shape,” Proc. R. Soc. A 463, 2589–2607 (2007). [CrossRef]
  15. C. Sohl, M. Gustafsson, and G. Kristensson, “Physical limitations on broadband scattering by heterogeneous obstacles,” J. Phys. A 40, 11165–11182 (2007). [CrossRef]
  16. C. Sohl, M. Gustafsson, and G. Kristensson, “Physical limitations on metamaterials: restrictions on scattering and absorption over a frequency interval,” J. Phys. D 40, 7146–7151 (2007). [CrossRef]
  17. D.-H. Kwon and D. Pozar, “Optimal characteristics of an arbitrary receive antenna,” IEEE Trans. Antennas Propag. 57, 3720–3727 (2009). [CrossRef]
  18. I. Liberal, I. Ederra, R. Gonzalo, and R. W. Ziolkowski, “A multipolar analysis of near-field absorption and scattering processes,” IEEE Trans. Antennas Propag. 61, 5184–5199 (2013). [CrossRef]
  19. I. Liberal and R. W. Ziolkowski, “Analytical and equivalent circuit models to elucidate power balance in scattering problems,” IEEE Trans. Antennas Propag. 61, 2714–2726 (2013). [CrossRef]
  20. P. Tuersun and X. Han, “Optical absorption analysis and optimization of gold nanoshells,” Appl. Opt. 52, 1325–1329 (2013). [CrossRef]
  21. T. J. Brockett, H. Rajagopalan, R. B. Laghumavarapu, D. Hufakker, and Y. Rahmat-Samii, “Electromagnetic characterization of high absorption sub-wavelength optical nanostructure photovoltaics for solar energy harvesting,” IEEE Trans. Antennas Propag. 61, 1518–1527 (2013). [CrossRef]
  22. S. D. Campbell and R. W. Ziolkowski, “Lightweight, flexible, polarization-insensitive, highly absorbing meta-films,” IEEE Trans. Antennas Propag. 61, 1191–1200 (2013). [CrossRef]
  23. Y. Ra’di and S. A. Tretyakov, “Balanced and optimal bianisotropic particles: maximizing power extracted from electromagnetic fields,” New J. Phys. 15, 053008 (2013). [CrossRef]
  24. J. B. Pendry, “Negative refraction,” Contemp. Phys. 45, 191–202 (2004). [CrossRef]
  25. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000). [CrossRef]
  26. R. G. Newton, “Optical theorem and beyond,” Am. J. Phys. 44, 639–642 (1976). [CrossRef]
  27. J. Hansen, ed., Spherical Near-Field Antenna Measurements, Vol. 26 of IEE Electromagnetic Waves Series (Peter Peregrinus, 1988).
  28. C. F. Bohren, “How can a particle absorb more than the light incident on it?” Am. J. Phys. 51, 323–327 (1983). [CrossRef]
  29. C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, 2012).
  30. R. Kastner, “High electromagnetic conductance media,” IEEE Trans. Antennas Propag. 61, 775–778 (2013). [CrossRef]
  31. S. I. Maslovski, P. M. Ikonen, I. Kolmakov, S. A. Tretyakov, and M. Kaunisto, “Artificial magnetic materials based on the new magnetic particle: metasolenoid,” Prog. Electromagn. Res. 54, 61–81 (2005). [CrossRef]
  32. P. Ikonen, S. Maslovski, C. Simovski, and S. Tretyakov, “On artificial magnetodielectric loading for improving the impedance bandwidth properties of microstrip antennas,” IEEE Trans. Antennas Propag. 54, 1654–1662 (2006). [CrossRef]
  33. K. Kwon and J. Choi, “Microstrip phase shifter using artificial magneto-dielectric for phased array antenna,” Microw. Opt. Technol. Lett. 55, 1868–1871 (2013). [CrossRef]
  34. S. K. Mandal, T. Rakshit, S. K. Ray, S. K. Mishra, P. S. R. Krishna, and A. Chandra, “Nanostructures of sr2+ doped BiFeO3 multifunctional ceramics with tunable photoluminescence and magnetic properties,” J. Phys. Condens. Matter 25, 055303 (2013). [CrossRef]
  35. R. Gómez-Medina, M. Nieto-Vesperinas, and J. J. Sáenz, “Nonconservative electric and magnetic optical forces on submicron dielectric particles,” Phys. Rev. A 83, 033825 (2011). [CrossRef]
  36. A. Garcia-Etxarri, R. Gómez-Medina, L. S. Froufe-Perez, C. Lopez, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Saenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19, 4815–4826 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited