OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 31, Iss. 9 — Sep. 1, 2014
  • pp: 1936–1945

Crossover regime of optical vortices generation via electro-optic nonlinearity: the problem of optical vortices with the fractional charge generated by crystals

Yurij Vasylkiv, Ihor Skab, and Rostyslav Vlokh  »View Author Affiliations


JOSA A, Vol. 31, Issue 9, pp. 1936-1945 (2014)
http://dx.doi.org/10.1364/JOSAA.31.001936


View Full Text Article

Enhanced HTML    Acrobat PDF (828 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this work, we analyze the behavior of topological defects of optical indicatrix orientation induced by a conically shaped electric field in crystals in a crossover regime that appears at intermediate fields separating the regimes of prevailing Pockels and Kerr electro-optic nonlinearities. We have found that increases in the electric voltage applied to a crystal induce neither topological defects, with the strengths being not multiples of ½, or the optical vortices with fractional charges. Instead, there appear some additional topological defects of the optical indicatrix orientation, the behavior of which we have studied in detail.

© 2014 Optical Society of America

OCIS Codes
(260.1180) Physical optics : Crystal optics
(260.1440) Physical optics : Birefringence
(260.6042) Physical optics : Singular optics
(260.2710) Physical optics : Inhomogeneous optical media

ToC Category:
Physical Optics

History
Original Manuscript: April 30, 2014
Revised Manuscript: July 8, 2014
Manuscript Accepted: July 16, 2014
Published: August 8, 2014

Citation
Yurij Vasylkiv, Ihor Skab, and Rostyslav Vlokh, "Crossover regime of optical vortices generation via electro-optic nonlinearity: the problem of optical vortices with the fractional charge generated by crystals," J. Opt. Soc. Am. A 31, 1936-1945 (2014)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-31-9-1936


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. S. Soskin and M. V. Vasnetsov, “Singular optics,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2001), Vol. 42, pp. 219–276.
  2. D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997). [CrossRef]
  3. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003). [CrossRef]
  4. S. Groblacher, T. Jennewein, A. Viziri, G. Weihs, and A. Zeillinger, “Experimental quantum cryptography with qutrits,” New J. Phys. 8, 75 (2006). [CrossRef]
  5. G. Molina-Terriza, A. Vaziri, J. Rehácek, Z. Hradil, and A. Zeilinger, “Triggered qutrits for quantum communication protocols,” Phys. Rev. Lett. 92, 167903 (2004). [CrossRef]
  6. D. P. DiVincenzo, “Quantum computation,” Science 270, 255–261 (1995). [CrossRef]
  7. J. F. Nay and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. A 336, 165–190 (1974). [CrossRef]
  8. L. Allen, M. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992). [CrossRef]
  9. I. V. Basistiy, M. S. Soskin, and M. V. Vasnetsov, “Optical wavefront dislocations and their properties,” Opt. Commun. 119, 604–612 (1995). [CrossRef]
  10. M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical wavefront laser beams produced with a spiral phase plate,” Opt. Commun. 112, 321–327 (1994). [CrossRef]
  11. S. S. R. Oemrawsingh, J. A. W. van Houwelingen, E. R. Eliel, J. P. Woerdman, E. J. K. Verstegen, J. G. Kloosterboer, and G. W. ’t Hooft, “Production and characterization of spiral phase plates for optical wavelengths,” Appl. Opt. 43, 688–694 (2004). [CrossRef]
  12. B. Piccirillo, V. D’Ambrosio, S. Slussarenko, L. Marrucci, and E. Santamato, “Photon spin-to-orbital angular momentum conversion via an electrically tunable q-plate,” Appl. Phys. Lett. 97, 241104 (2010). [CrossRef]
  13. L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006). [CrossRef]
  14. A. Volyar, V. Shvedov, T. Fadeyeva, A. S. Desyatnikov, D. N. Neshev, W. Krolikowski, and Yu. S. Kivshar, “Generation of single-charge optical vortices with a uniaxial crystal,” Opt. Express 14, 3724–3729 (2006). [CrossRef]
  15. M. V. Vasnetsov, I. V. Basistiy, and M. S. Soskin, “Free-space evolution of monochromatic mixed screw-edge wavefront dislocations,” Proc. SPIE 3487, 29–33 (1998). [CrossRef]
  16. I. V. Basistiy, V. A. Pas’ko, V. V. Slyusar, M. S. Soskin, and M. V. Vasnetsov, “Synthesis and analysis of optical vortices with fractional topological charges,” J. Opt. A 6, S166–S169 (2004). [CrossRef]
  17. S. H. Tao, W. M. Lee, and X.-C. Yuan, “Dynamic optical manipulation with a higher-order fractional Bessel beam generated from a spatial light modulator,” Opt. Lett. 28, 1867–1869 (2003). [CrossRef]
  18. M. V. Berry, “Optical vortices evolving from helicoidal integer and fractional phase steps,” J. Opt. A 6, 259–268 (2004). [CrossRef]
  19. J. Leach, E. Yao, and M. J. Padgett, “Observation of the vortex structure of a non-integer vortex beam,” New J. Phys. 6, 71–78 (2004). [CrossRef]
  20. W. M. Lee, X.-C. Yuan, and K. Dholakia, “Experimental observation of optical vortex evolution in a Gaussian beam with an embedded fractional phase step,” Opt. Commun. 239, 129–135 (2004). [CrossRef]
  21. S. H. Tao, W. M. Lee, and X.-C. Yuan, “Experimental study of holographic generation of fractional Bessel beams,” Appl. Opt. 43, 122–126 (2004). [CrossRef]
  22. T. A. Fadeyeva, A. F. Rubass, I. S. Valkov, and A. V. Volyar, “Fractional optical vortices in a uniaxial crystal,” J. Opt. 15, 044020 (2013). [CrossRef]
  23. T. Fadeyeva, C. Alexeyev, A. Rubass, and A. Volyar, “Vector erf-Gaussian beams: fractional optical vortices and asymmetric TE- and TM-modes,” Opt. Lett. 37, 1397–1399 (2012). [CrossRef]
  24. A. V. Volyar, “Do optical quarks exist in the free space? A scalar treatment,” Ukr. J. Phys. Opt. 14, 31–43 (2013). [CrossRef]
  25. T. A. Fadeyeva, “Hidden chains of optical vortices generated using a corner of phase wedge,” Ukr. J. Phys. Opt. 14, 57–69 (2013). [CrossRef]
  26. G. Tóth, C. Denniston, and J. M. Yeomans, “Hydrodynamics of topological defects in nematic liquid crystals,” Phys. Rev. Lett. 88, 105504 (2002). [CrossRef]
  27. I. Skab, Yu. Vasylkiv, B. Zapeka, V. Savaryn, and R. Vlokh, “Appearance of singularities of optical fields under torsion of crystals containing threefold symmetry axes,” J. Opt. Soc. Am. A 28, 1331–1340 (2011). [CrossRef]
  28. I. Skab, Yu. Vasylkiv, V. Savaryn, and R. Vlokh, “Optical anisotropy induced by torsion stresses in LiNbO3 crystals: appearance of an optical vortex,” J. Opt. Soc. Am. A 28, 633–640 (2011). [CrossRef]
  29. I. Skab, Yu. Vasylkiv, I. Smaga, and R. Vlokh, “Spin-to-orbital momentum conversion via electro-optic Pockels effect in crystals,” Phys. Rev. A 84, 043815 (2011). [CrossRef]
  30. Yu. Vasylkiv, O. Krupych, I. Skab, and R. Vlokh, “On the spin-to-orbit momentum conversion operated by electric field in optically active Bi12GeO20 crystals,” Ukr. J. Phys. Opt. 12, 171–179 (2011). [CrossRef]
  31. I. Skab, Yu. Vasylkiv, and R. Vlokh, “Induction of optical vortex in the crystals subjected to bending stresses,” Appl. Opt. 51, 5797–5805 (2012). [CrossRef]
  32. Yu. Vasylkiv, I. Skab, and R. Vlokh, “Double-charged optical vortices generation on the basis of electro-optic Kerr effect,” Appl. Opt. 53, B60–B73 (2014). [CrossRef]
  33. L. Marrucci, “Generation of helical modes of light by spin-to-orbital angular momentum conversion in inhomogeneous liquid crystals,” Mol. Cryst. Liq. Cryst. 488, 148–162 (2008). [CrossRef]
  34. M. P. Shaskolskaya, Acoustic Crystals (Nauka, 1982).
  35. M. E. Lines and A. M. Glass, Principles and Application of Ferroelectric and Related Materials (Clarendon, 1977).
  36. O. D. Lavrentovich, “Topological defects in dispersed liquid crystals, or words and worlds around liquid crystal drops,” Liq. Cryst. 24, 117–126 (1998). [CrossRef]
  37. A. L. Roitburd, “The theory of the formation of a heterophase structure in phase transformations in solids,” Sov. Phys. Usp. 17, 326–344 (1974). [CrossRef]
  38. E. F. Dudnik and L. A. Shuvalov, “Domain structure and phase boundaries in ferroelastics,” Ferroelectrics 98, 207–233 (1989). [CrossRef]
  39. A. L. Roitburd, “Elastic domains and polydomain phases in solids,” Phase Transit. 45, 1–34 (1993). [CrossRef]
  40. A. I. Otko, G. G. Krainyuk, and A. E. Nosenko, “Domain structures and electromechanical effects in inhomogeneously strained Gd2(MoO4)3 crystals,” Ferroelectrics 64, 147–149 (1985). [CrossRef]
  41. G. G. Krainyuk, A. I. Otko, and A. E. Nosenko, “Electromechanical effects at the torsion and bending of Gd2(MoO4)3 crystals with the regular domain structures,” Fiz. Tverd. Tela 26, 2611–2614 (1984).
  42. J. Sapriel, “Domain-wall orientations in ferroelastics,” Phys. Rev. B 12, 5128–5140 (1975). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited