OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 31, Iss. 9 — Sep. 1, 2014
  • pp: 1946–1955

Internal and near-surface electromagnetic fields for a dielectric spheroid illuminated by a zero-order Bessel beam

Lu Han, Yiping Han, Jiajie Wang, and Zhiwei Cui  »View Author Affiliations


JOSA A, Vol. 31, Issue 9, pp. 1946-1955 (2014)
http://dx.doi.org/10.1364/JOSAA.31.001946


View Full Text Article

Enhanced HTML    Acrobat PDF (689 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Within the framework of generalized Lorenz–Mie theory, scattering from a homogeneous spheroidal particle illuminated by an on-axis zero-order Bessel beam is formulated analytically, with special attention paid to the investigation of internal and near-surface fields. Numerical results concerning the spatial distributions of internal and near-surface fields are presented for various parameter values, such as the half-cone angle of the incident zero-order Bessel beam, the major axis, the minor axis, and the refractive index of the spheroid. The study of internal and near-surface field distributions will contribute to the understanding of Bessel beam scattering by nonspherical particles with sizes close to the incident wavelength.

© 2014 Optical Society of America

OCIS Codes
(140.3430) Lasers and laser optics : Laser theory
(260.2110) Physical optics : Electromagnetic optics
(290.4020) Scattering : Mie theory
(290.5850) Scattering : Scattering, particles

ToC Category:
Physical Optics

History
Original Manuscript: June 13, 2014
Revised Manuscript: July 14, 2014
Manuscript Accepted: July 14, 2014
Published: August 8, 2014

Citation
Lu Han, Yiping Han, Jiajie Wang, and Zhiwei Cui, "Internal and near-surface electromagnetic fields for a dielectric spheroid illuminated by a zero-order Bessel beam," J. Opt. Soc. Am. A 31, 1946-1955 (2014)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-31-9-1946


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L.-P. Hsiang and G. M. Faeth, “Near-limit drop deformation and secondary breakup,” Int. J. Multiphase Flow 18, 635–652 (1992). [CrossRef]
  2. D. R. Secker, P. H. Kaye, R. S. Greenaway, E. Hirst, D. L. Bartley, and G. Videen, “Light scattering from deformed droplets and droplets with inclusions. I. Experimental results,” Appl. Opt. 39, 5023–5030 (2000). [CrossRef]
  3. G. Videen, W. Sun, Q. Fu, D. R. Secker, R. S. Greenaway, P. H. Kaye, E. Hirst, and D. Bartley, “Light scattering from deformed droplets and droplets with inclusions. II. Theoretical treatment,” Appl. Opt. 39, 5031–5039 (2000). [CrossRef]
  4. S. V. Tsinopoulos and D. Polyzos, “Scattering of He-Ne laser light by an average-sized red blood cell,” Appl. Opt. 38, 5499–5510 (1999). [CrossRef]
  5. N. Roth, K. Anders, and A. Frohn, “Simultaneous measurement of temperature and size of droplets in the micrometer range,” J. Laser Appl. 2, 37 (1990). [CrossRef]
  6. S. Asano and G. Yamamoto, “Light scattering by a spheroidal particle,” Appl. Opt. 14, 29–49 (1975). [CrossRef]
  7. S. Asano, “Light scattering properties of spheroidal particles,” Appl. Opt. 18, 712–723 (1979). [CrossRef]
  8. N. Voshchinnikov and V. Farafonov, “Optical properties of spheroidal particles,” Astrophys. Space Sci. 204, 19–86 (1993). [CrossRef]
  9. A. R. Sebak and B. P. Sinha, “Scattering by a conducting spheroidal object with dielectric coating at axial incidence,” IEEE Trans. Antennas Propag. 40, 268–274 (1992). [CrossRef]
  10. Y. Han and Z. Wu, “Scattering of a spheroidal particle illuminated by a Gaussian beam,” Appl. Opt. 40, 2501–2509 (2001). [CrossRef]
  11. Y. Han, G. Gréhan, and G. Gouesbet, “Generalized Lorenz-Mie theory for a spheroidal particle with off-axis Gaussian-beam illumination,” Appl. Opt. 42, 6621–6629 (2003). [CrossRef]
  12. Y. P. Han, L. C. Méès, K. F. Ren, G. Gréhan, Z. S. Wu, and G. Gouesbet, “Far scattered field from a spheroid under a femtosecond pulsed illumination in a generalized Lorenz–Mie theory framework,” Opt. Commun. 231, 71–77 (2004). [CrossRef]
  13. Y. Han, H. Zhang, and G. Han, “The expansion coefficients of arbitrary shaped beam in oblique illumination,” Opt. Express 15, 735–746 (2007). [CrossRef]
  14. H. Zhang and Y. Han, “Scattering by a confocal multilayered spheroidal particle illuminated by an axial Gaussian beam,” IEEE Trans. Antennas Propag. 53, 1514–1518 (2005). [CrossRef]
  15. Y. Han, H. Zhang, and X. Sun, “Scattering of shaped beam by an arbitrarily oriented spheroid having layers with non-confocal boundaries,” Appl. Phys. B 84, 485–492 (2006). [CrossRef]
  16. F. Xu, K. Ren, G. Gouesbet, G. Gréhan, and X. Cai, “Generalized Lorenz-Mie theory for an arbitrarily oriented, located, and shaped beam scattered by a homogeneous spheroid,” J. Opt. Soc. Am. A 24, 119–131 (2007). [CrossRef]
  17. F. Xu, K. Ren, and X. Cai, “Expansion of an arbitrarily oriented, located, and shaped beam in spheroidal coordinates,” J. Opt. Soc. Am. A 24, 109–118 (2007). [CrossRef]
  18. Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12, 1214–1220 (2004). [CrossRef]
  19. A. Itagi and W. Challener, “Optics of photonic nanojets,” J. Opt. Soc. Am. A 22, 2847–2858 (2005). [CrossRef]
  20. S. Lecler, Y. Takakura, and P. Meyrueis, “Properties of a three-dimensional photonic jet,” Opt. Lett. 30, 2641–2643 (2005). [CrossRef]
  21. A. Devilez, B. Stout, N. Bonod, and E. Popov, “Spectral analysis of three-dimensional photonic jets,” Opt. Express 16, 14200–14212 (2008). [CrossRef]
  22. P. Ferrand, J. Wenger, A. Devilez, M. Pianta, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Direct imaging of photonic nanojets,” Opt. Express 16, 6930–6940 (2008). [CrossRef]
  23. D. Maděránková, I. Provazník, and K. Klepárník, “Numerical modeling of photonic nanojet behind dielectric microcylinder,” in Proceedings of World Congress on Medical Physics and Biomedical Engineering, O. Dossel and W. C. Schlegel, eds. (Springer, 2010), pp. 1135–1138.
  24. J. Barton, “Internal and near-surface electromagnetic fields for a spheroidal particle with arbitrary illumination,” Appl. Opt. 34, 5542–5551 (1995). [CrossRef]
  25. J. Barton, “Internal and near-surface electromagnetic fields for an absorbing spheroidal particle with arbitrary illumination,” Appl. Opt. 34, 8472–8473 (1995). [CrossRef]
  26. M. J. Mendes, I. Tobías, A. Martí, and A. Luque, “Near-field scattering by dielectric spheroidal particles with sizes on the order of the illuminating wavelength,” J. Opt. Soc. Am. B 27, 1221–1231 (2010). [CrossRef]
  27. M. J. Mendes, I. Tobías, A. Martí, and A. Luque, “Light concentration in the near-field of dielectric spheroidal particles with mesoscopic sizes,” Opt. Express 19, 16207–16222 (2011). [CrossRef]
  28. C.-Y. Liu, “Ultra-elongated photonic nanojets generated by a graded-index microellipsoid,” Prog. Electromagn. Res. Lett. 37, 153–165 (2013). [CrossRef]
  29. L. Han, Y. Han, J. Wang, and G. Gouesbet, “Internal and near-surface field distributions for a spheroidal particle illuminated by a focused Gaussian beam: on-axis case,” J. Quant. Spectrosc. Radiat. Transfer 126, 38–43 (2013). [CrossRef]
  30. L. Han, Y. Han, G. Gouesbet, J. Wang, and G. Gréhan, “Photonic jet generated by spheroidal particle with Gaussian-beam illumination,” J. Opt. Soc. Am. B 31, 1476–1483 (2014). [CrossRef]
  31. V. N. Astratov, A. Darafsheh, M. D. Kerr, K. W. Allen, N. M. Fried, A. N. Antoszyk, and H. S. Ying, “Photonic nanojets for laser surgery,” SPIE Newsroom 12, 32–34 (2010).
  32. H. Seidfaraji, M. Hasan, and J. J. Simpson, “A feasibility study of microjets applied to breast cancer detection,” in 2012 International Conference on Electromagnetics in Advanced Applications (IEEE, 2012), pp. 949–951.
  33. W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology 18, 485302 (2007). [CrossRef]
  34. E. Mcleod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3, 413–417 (2008). [CrossRef]
  35. S. C. Kong, A. Sahakian, A. Taflove, and V. Backman, “Photonic nanojet-enabled optical data storage,” Opt. Express 16, 13713–13719 (2008). [CrossRef]
  36. S. C. Kong, A. V. Sahakian, A. Heifetz, A. Taflove, and V. Backman, “Robust detection of deeply subwavelength pits in simulated optical data-storage disks using photonic jets,” Appl. Phys. Lett. 92, 211102 (2008). [CrossRef]
  37. Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50  nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011). [CrossRef]
  38. Y. Duan, G. Barbastathis, and B. Zhang, “Classical imaging theory of a microlens with super-resolution,” Opt. Lett. 38, 2988–2990 (2013). [CrossRef]
  39. X. Li, Z. G. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13, 526–533 (2005). [CrossRef]
  40. P. Ghenuche, H. Rigneault, and J. Wenger, “Photonic nanojet focusing for hollow-core photonic crystal fiber probes,” Appl. Opt. 51, 8637–8640 (2012). [CrossRef]
  41. F. O. Fahrbach, V. Gurchenkov, K. Alessandri, P. Nassoy, and A. Rohrbach, “Light-sheet microscopy in thick media using scanned Bessel beams and two-photon fluorescence excitation,” Opt. Express 21, 13824–13839 (2013). [CrossRef]
  42. T. Wulle and S. Herminghaus, “Nonlinear optics of Bessel beams,” Phys. Rev. Lett. 70, 1401–1404 (1993). [CrossRef]
  43. J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001). [CrossRef]
  44. B. Hafizi, E. Esarey, and P. Sprangle, “Laser-driven acceleration with Bessel beams,” Phys. Rev. E 55, 3539–3545 (1997). [CrossRef]
  45. J. Fan, E. Parra, and H. Milchberg, “Resonant self-trapping and absorption of intense Bessel beams,” Phys. Rev. Lett. 84, 3085–3088 (2000). [CrossRef]
  46. C. McQueen, J. Arlt, and K. Dholakia, “An experiment to study a ‘nondiffracting’ light beam,” Am. J. Phys. 67, 912–915 (1999). [CrossRef]
  47. A. N. Khilo, E. G. Katranji, and A. A. Ryzhevich, “Axicon-based Bessel resonator: analytical description and experiment,” J. Opt. Soc. Am. A 18, 1986–1992 (2001). [CrossRef]
  48. L. Han, G. Gouesbet, Y. Han, G. Gréhan, and J. Wang, “Intrinsic method for the evaluation of beam shape coefficients in spheroidal coordinates for on-axis standard configuration,” Opt. Commun. 310, 125–137 (2014). [CrossRef]
  49. L. Han, Y. Han, Z. Cui, and J. Wang, “Expansion of a zero-order Bessel beam in spheroidal coordinates by generalized Lorenz–Mie theory,” J. Quant. Spectrosc. Radiat. Transfer 147, 279–287 (2014). [CrossRef]
  50. C. Flammer, Spheroidal Wave Functions (Stanford University, 1957).
  51. G. Gouesbet, F. Xu, and Y. Han, “Expanded description of electromagnetic arbitrary shaped beams in spheroidal coordinates, for use in light scattering theories: a review,” J. Quant. Spectrosc. Radiat. Transfer 112, 2249–2267 (2011). [CrossRef]
  52. S. Mishra, “A vector wave analysis of a Bessel beam,” Opt. Commun. 85, 159–161 (1991). [CrossRef]
  53. Z. Cui, Y. Han, and L. Han, “Scattering of a zero-order Bessel beam by arbitrarily shaped homogeneous dielectric particles,” J. Opt. Soc. Am. A 30, 1913–1920 (2013). [CrossRef]
  54. F. Mitri, “Arbitrary scattering of an electromagnetic zero-order Bessel beam by a dielectric sphere,” Opt. Lett. 36, 766–768 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited