OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 31, Iss. 9 — Sep. 1, 2014
  • pp: 1969–1976

Molding the flow of light with a magnetic field: plasmonic cloaking and directional scattering

W. J. M. Kort-Kamp, F. S. S. Rosa, F. A. Pinheiro, and C. Farina  »View Author Affiliations

JOSA A, Vol. 31, Issue 9, pp. 1969-1976 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (720 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate electromagnetic (EM) scattering and plasmonic cloaking in a system composed of a dielectric cylinder coated with a magneto-optical shell. In the long-wavelength limit we demonstrate that the application of an external magnetic field can not only switch on and off the cloaking mechanism but also mitigate losses, as the absorption cross section is shown to drop sharply precisely at the cloaking operation frequency band. We also show that the angular distribution of the scattered radiation can be effectively controlled by applying an external magnetic field, allowing for a swift change in the scattering pattern. By demonstrating that these results are feasible with realistic, existing magneto-optical materials, such as graphene epitaxially grown on SiC, we suggest that magnetic fields could be used as effective, versatile external agents to tune plasmonic cloaks and to dynamically control EM scattering in an unprecedented way. We hope that these results may find use in disruptive photonic technologies.

© 2014 Optical Society of America

OCIS Codes
(160.3820) Materials : Magneto-optical materials
(230.0230) Optical devices : Optical devices
(230.3205) Optical devices : Invisibility cloaks
(290.5839) Scattering : Scattering, invisibility

ToC Category:
Optical Devices

Original Manuscript: April 21, 2014
Revised Manuscript: June 26, 2014
Manuscript Accepted: July 22, 2014
Published: August 11, 2014

W. J. M. Kort-Kamp, F. S. S. Rosa, F. A. Pinheiro, and C. Farina, "Molding the flow of light with a magnetic field: plasmonic cloaking and directional scattering," J. Opt. Soc. Am. A 31, 1969-1976 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11, 917–924 (2012). [CrossRef]
  2. J. B. Pendry, D. Shurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006). [CrossRef]
  3. U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006). [CrossRef]
  4. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006). [CrossRef]
  5. A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623 (2005). [CrossRef]
  6. A. Alù and N. Engheta, “Plasmonic and metamaterial cloaking: physical mechanisms and potentials,” J. Opt. A 10, 093002 (2008). [CrossRef]
  7. B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103, 153901 (2009). [CrossRef]
  8. D. S. Filonov, A. P. Slobozhanyuk, P. A. Belov, and Y. S. Kivshar, “Double-shell metamaterial coatings for plasmonic cloaking,” Phys. Status Solidi 6, 46–48 (2012). [CrossRef]
  9. P. Y. Chen, J. Soric, and A. Alù, “Invisibility and cloaking based on scattering cancellation,” Adv. Mater. 24, OP281–OP284 (2012).
  10. D. Rainwater, A. Kerkhoff, K. Melin, J. C. Soric, G. Moreno, and A. Alú, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys. 14, 013054 (2012). [CrossRef]
  11. W. J. M. Kort-Kamp, F. S. S. Rosa, F. A. Pinheiro, and C. Farina, “Spontaneous emission in the presence of a spherical plasmonic metamaterial,” Phys. Rev. A 87, 023837 (2013). [CrossRef]
  12. N. A. Nicorovici, R. C. McPhedran, and G. W. Milton, “Optical and dielectric properties of partially resonant composites,” Phys. Rev. B 49, 8479–8482 (1994). [CrossRef]
  13. T. H. Anderson, T. G. Mackay, and A. Lakhtakia, “Toward a cylindrical cloak via inverse homogenization,” J. Opt. Soc. Am. A 29, 239–243 (2012). [CrossRef]
  14. H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9, 387–396 (2010). [CrossRef]
  15. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009). [CrossRef]
  16. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010). [CrossRef]
  17. A. Alú, “Mantle cloak: invisibility induced by a surface,” Phys. Rev. B 80, 245115 (2009). [CrossRef]
  18. J. C. Soric, P. Y. Chen, A. Kerkhoff, D. Rainwater, K. Melin, and A. Alú, “Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space,” New J. Phys. 15, 033037 (2013). [CrossRef]
  19. S. Tretyakov, P. Alitalo, O. Luukkonen, and C. Simovski, “Broadband electromagnetic cloaking of long cylindrical objects,” Phys. Rev. Lett. 103, 103905 (2009). [CrossRef]
  20. P. Li, Y. Liu, Y. Meng, and M. Zhu, “A frequency-tunable cloak with semiconducting constituents,” J. Phys. D 43, 175404 (2010). [CrossRef]
  21. P. Li, Y. Liu, Y. Meng, and M. Zhu, “Frequency-tunable superconducting cloaking,” J. Phys. D 43, 485401 (2010). [CrossRef]
  22. N. A. Zharova, I. V. Shadrivov, A. A. Zharov, and Y. S. Kivshar, “Nonlinear control of invisibility cloaking,” Opt. Express 20, 14954–14959 (2012). [CrossRef]
  23. F. G. Vasquez, G. W. Milton, and D. Onofrei, “Active exterior cloaking for the 2D Laplace and Helmholtz equations,” Phys. Rev. Lett. 103, 073901 (2009). [CrossRef]
  24. F. G. Vasquez, G. W. Milton, and D. Onofrei, “Broadband exterior cloaking,” Opt. Express 17, 14800–14805 (2009). [CrossRef]
  25. P. Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5, 5855–5863 (2011). [CrossRef]
  26. M. Farhat, C. Rockstuhl, and H. Bagci, “A 3D tunable and multi-frequency graphene plasmonic cloak,” Opt. Express 21, 12592–12603 (2013). [CrossRef]
  27. F. Monticone, C. Argyropoulos, and A. Alù, “Multilayered plasmonic covers for comblike scattering response and optical tagging,” Phys. Rev. Lett. 110, 113901 (2013). [CrossRef]
  28. W. J. M. Kort-Kamp, F. S. S. Rosa, F. A. Pinheiro, and C. Farina, “Tuning plasmonic cloaks with an external magnetic field,” Phys. Rev. Lett. 111, 215504 (2013). [CrossRef]
  29. T. K. Xia, P. M. Hui, and D. Stroud, “Theory of Faraday rotation in granular magnetic materials,” J. Appl. Phys. 67, 2736–2741 (1990). [CrossRef]
  30. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  31. J. C. Monzon and N. J. Damaskos, “Two-dimensional scattering by a homogeneous anisotropic rod,” IEEE Trans. Antennas Propag. AP-34, 1243–1249 (1986). [CrossRef]
  32. [30] Note that Eqs. (5)–(8) simplify considerably in the isotropic regions 1 and 3.
  33. M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, 9th ed. (Dover, 1965).
  34. I. Crassee, M. Orlita, M. Potemski, A. L. Walter, M. Ostler, T. Seyller, I. Gaponenko, J. Chen, and A. B. Kuzmenko, “Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene,” Nano Lett. 12, 2470–2474 (2012). [CrossRef]
  35. D. B. Hough and L. R. White, “The calculation of hamaker constants from liftshitz theory with applications to wetting phenomena,” Adv. Colloid Interface Sci. 14, 3–41 (1980). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited