OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 31, Iss. 9 — Sep. 1, 2014
  • pp: 1977–1983

Asymmetric Bessel–Gauss beams

V. V. Kotlyar, A. A. Kovalev, R. V. Skidanov, and V. A. Soifer  »View Author Affiliations


JOSA A, Vol. 31, Issue 9, pp. 1977-1983 (2014)
http://dx.doi.org/10.1364/JOSAA.31.001977


View Full Text Article

Enhanced HTML    Acrobat PDF (763 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a three-parameter family of asymmetric Bessel–Gauss (aBG) beams with integer and fractional orbital angular momentum (OAM). The aBG beams are described by the product of a Gaussian function by the nth-order Bessel function of the first kind of complex argument, having finite energy. The aBG beam’s asymmetry degree depends on a real parameter c0: at c=0, the aBG beam is coincident with a conventional radially symmetric Bessel–Gauss (BG) beam; with increasing c, the aBG beam acquires a semicrescent shape, then becoming elongated along the y axis and shifting along the x axis for c1. In the initial plane, the intensity distribution of the aBG beams has a countable number of isolated optical nulls on the x axis, which result in optical vortices with unit topological charge and opposite signs on the different sides of the origin. As the aBG beam propagates, the vortex centers undergo a nonuniform rotation with the entire beam about the optical axis (c1), making a π/4 turn at the Rayleigh range and another π/4 turn after traveling the remaining distance. At different values of the c parameter, the optical nulls of the transverse intensity distribution change their position, thus changing the OAM that the beam carries. An isolated optical null on the optical axis generates an optical vortex with topological charge n. A vortex laser beam shaped as a rotating semicrescent has been generated using a spatial light modulator.

© 2014 Optical Society of America

OCIS Codes
(050.1960) Diffraction and gratings : Diffraction theory
(350.5500) Other areas of optics : Propagation
(050.4865) Diffraction and gratings : Optical vortices

ToC Category:
Diffraction and Gratings

History
Original Manuscript: May 13, 2014
Revised Manuscript: July 13, 2014
Manuscript Accepted: July 16, 2014
Published: August 11, 2014

Citation
V. V. Kotlyar, A. A. Kovalev, R. V. Skidanov, and V. A. Soifer, "Asymmetric Bessel–Gauss beams," J. Opt. Soc. Am. A 31, 1977-1983 (2014)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-31-9-1977


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Gori, G. Guattari, and C. Padovani, “Bessel-Gauss beams,” Opt. Commun. 64, 491–495 (1987). [CrossRef]
  2. Y. Li, H. Lee, and E. Wolf, “New generalized Bessel-Gauss beams,” J. Opt. Soc. Am. A 21, 640–646 (2004). [CrossRef]
  3. A. P. Kisilev, “New structures in paraxial Gaussian beams,” Opt. Spectrosc. 96, 479–481 (2004). [CrossRef]
  4. J. C. Gutierrez-Vega and M. A. Bandres, “Helmholtz-Gauss waves,” J. Opt. Soc. Am. A 22, 289–298 (2005). [CrossRef]
  5. V. Bagini, F. Frezza, M. Santarsiero, G. Schettini, and G. Shirripa Spagnolo, “Generalized Bessel-Gauss beams,” J. Mod. Opt. 43, 1155–1166 (1996).
  6. C. J. R. Sheppard, “Beam duality, with application to generalized Bessel-Gaussian, and Hermite- and Laguerre-Gaussian beams,” Opt. Express 17, 3690–3697 (2009). [CrossRef]
  7. J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A 4, 651–654 (1987). [CrossRef]
  8. W. Miller, Symmetry and Separation of Variables (Addison-Wesley, 1977).
  9. R. Jáuregui and S. Hacyan, “Quantum-mechanical properties of Bessel beams,” Phys. Rev. A 71, 033411 (2005). [CrossRef]
  10. V. V. Kotlyar, S. N. Khonina, and V. A. Soifer, “Algorithm for the generation of non-diffracting Bessel beams,” J. Mod. Opt. 42, 1231–1239 (1995). [CrossRef]
  11. J. C. Gutierrez-Vega, M. D. Iturbe-Castillo, and S. Chavez-Cedra, “Alternative formulation for invariant optical fields: Mathieu beams,” Opt. Lett. 25, 1493–1495 (2000). [CrossRef]
  12. S. Chavez-Cedra, J. C. Gutierrez-Vega, and G. H. C. New, “Elliptic vortices of electromagnetic wave fields,” Opt. Lett. 26, 1803–1805 (2001). [CrossRef]
  13. K. Volke-Sepulveda and E. Ley-Koo, “General construction and connections of vector propagation invariant optical fields: TE and TM modes and polarization states,” J. Opt. A 8, 867–877 (2006).
  14. B. M. Rodríguez-Lara and R. Jáuregui, “Dynamical constants for electromagnetic fields with elliptic-cylindrical symmetry,” Phys. Rev. A 78, 033813 (2008). [CrossRef]
  15. V. V. Kotlyar and A. A. Kovalev, “Hermite-Gaussian modal laser beams with orbital angular momentum,” J. Opt. Soc. Am. A 31, 274–282 (2014). [CrossRef]
  16. J. Gutiérrez-Vega and M. Bandres, “Normalization of the Mathieu-Gauss optical beams,” J. Opt. Soc. Am. A 24, 215–220 (2007).
  17. M. R. Dennis and J. D. Ring, “Propagation-invariant beams with quantum pendulum spectra: from Bessel beams to Gaussian beam-beams,” Opt. Lett. 38, 3325–3328 (2013). [CrossRef]
  18. V. V. Kotlyar, A. A. Kovalev, and V. A. Soifer, “Asymmetric Bessel modes,” Opt. Lett. 39, 2395–2398 (2014). [CrossRef]
  19. A. P. Prudnikov, J. A. Brychkov, and O. I. Marichev, Integrals and Series. Special Functions (Science, 1983).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited