## Realization of first-order optical systems using thin convex lenses of fixed focal length |

JOSA A, Vol. 31, Issue 9, pp. 2011-2020 (2014)

http://dx.doi.org/10.1364/JOSAA.31.002011

Enhanced HTML Acrobat PDF (411 KB)

### Abstract

A general axially symmetric first-order optical system is realized using free propagation and thin convex lenses of fixed focal length. It is shown that not more than five convex lenses of fixed focal length are required to realize the most general first-order optical system, with the required number of lenses depending on the situation. The free propagation distances are evaluated explicitly in each situation. The optimality of the decomposition obtained in each situation is brought out. Decompositions for some familiar subgroups of

© 2014 Optical Society of America

**OCIS Codes**

(070.2580) Fourier optics and signal processing : Paraxial wave optics

(070.2590) Fourier optics and signal processing : ABCD transforms

(080.2730) Geometric optics : Matrix methods in paraxial optics

(080.3620) Geometric optics : Lens system design

(080.2468) Geometric optics : First-order optics

**ToC Category:**

Geometric Optics

**History**

Original Manuscript: April 8, 2014

Revised Manuscript: June 28, 2014

Manuscript Accepted: July 14, 2014

Published: August 20, 2014

**Citation**

P. A. Ameen Yasir and J. Solomon Ivan, "Realization of first-order optical systems using thin convex lenses of fixed focal length," J. Opt. Soc. Am. A **31**, 2011-2020 (2014)

http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-31-9-2011

Sort: Year | Journal | Reset

### References

- H. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt. 5, 1550–1567 (1966). [CrossRef]
- R. Simon, E. C. G. Sudarshan, and N. Mukunda, “Generalized rays in first-order optics: transformation properties of Gaussian Schell-model fields,” Phys. Rev. A 29, 3273–3279 (1984). [CrossRef]
- H. H. Arsenault, “Generalization of the principal plane concept in matrix optics,” Am. J. Phys. 48, 397–399 (1980). [CrossRef]
- E. C. G. Sudarshan, N. Mukunda, and R. Simon, “Realization of first order optical systems using thin lenses,” Opt. Acta 32, 855–872 (1985). [CrossRef]
- M. Nazarathy and J. Shamir, “First-order optics—a canonical operator representation: lossless systems,” J. Opt. Soc. Am. 72, 356–364 (1982). [CrossRef]
- M. Nazarathy and J. Shamir, “Fourier optics described by operator algebra,” J. Opt. Soc. Am. 70, 150–159 (1980). [CrossRef]
- R. Simon and K. B. Wolf, “Structure of the set of paraxial optical systems,” J. Opt. Soc. Am. A 17, 342–355 (2000). [CrossRef]
- L. W. Casperson, “Synthesis of Gaussian beam optical systems,” Appl. Opt. 20, 2243–2249 (1981). [CrossRef]
- H. H. Arsenault and B. Macukow, “Factorization of the transfer matrix for symmetrical optical systems,” J. Opt. Soc. Am. 73, 1350–1359 (1983). [CrossRef]
- S. Cornbleet, “Geometrical optics reviewed: a new light on an old subject,” Proc. IEEE 71, 471–502 (1983). [CrossRef]
- N. Mukunda, “Role of symmetry and group structure in optics,” Current Sci. 59, 1135–1151 (1990).
- O. N. Stavroudis, “The lens group,” in The Optics of Rays, Wavefronts, and Caustics, H. S. W. Massey and K. A. Brueckner, eds. (Academic, 1972), pp. 281–297.
- M. J. Bastiaans and T. Alieva, “Synthesis of an arbitrary ABCD system with fixed lens positions,” Opt. Lett 31, 2414–2416 (2006). [CrossRef]
- M. J. Bastiaans and T. Alieva, “Classification of lossless first-order optical systems and the linear canonical transformation,” J. Opt. Soc. Am. A 24, 1053–1062 (2007). [CrossRef]
- T. Alieva and M. J. Bastiaans, “Properties of the linear canonical integral transformation,” J. Opt. Soc. Am. A 24, 3658–3665 (2007). [CrossRef]
- X. Liu and K. H. Brenner, “Minimal optical decomposition of ray transfer matrices,” Appl. Opt. 47, E88–E98 (2008). [CrossRef]
- D. J. Ming and F. H. Yi, “New decomposition of the Fresnel operator corresponding to the optical transformation in ABCD-systems,” Chin. Phys. B 22, 060302 (2013). [CrossRef]
- Arvind, B. Dutta, N. Mukunda, and R. Simon, “The real symplectic groups in quantum mechanics and optics,” Pramana 45, 471–497 (1995). [CrossRef]
- R. A. Horn and C. R. Johnson, “Canonical forms for similarity and triangular factorizations,” in Matrix Analysis (Cambridge University, 2013), pp. 163–224.
- R. Simon, N. Mukunda, and E. C. G. Sudarshan, “Hamilton’s theory of turns generalized to Sp(2,R),” Phys. Rev. Lett. 62, 1331–1334 (1989). [CrossRef]
- R. Simon, N. Mukunda, and E. C. G. Sudarshan, “The theory of screws: a new geometric representation for the group SU(1,1),” J. Math. Phys. 30, 1000–1006 (1989). [CrossRef]
- K. B. Wolf, “Construction and properties of canonical transforms,” in Integral Transforms in Science and Engineering, A. Miele, ed. (Springer, 1979), pp. 381–416.
- K. B. Wolf, “Canonical transforms. I. Complex linear transforms,” J. Math. Phys. 15, 1295–1301 (1974). [CrossRef]
- N. M. Atakishiyev, L. E. Vicent, and K. B. Wolf, “Continuous vs. discrete fractional Fourier transforms,” J. Comput. Appl. Math. 107, 73–95 (1999). [CrossRef]
- R. Simon and K. B. Wolf, “Fractional Fourier transforms in two dimensions,” J. Opt. Soc. Am. A 17, 2368–2381 (2000). [CrossRef]
- J. Shamir and N. Cohen, “Root and power transformations in optics,” J. Opt. Soc. Am. A 12, 2415–2423 (1995). [CrossRef]
- K. B. Wolf, “Canonical transformations,” in Geometric Optics on Phase Space (Springer, 2004), pp. 25–46.
- A. Yariv and P. Yeh, “Rays and optical beams,” in Photonics, A. S. Sedra, ed. (Oxford, 2007), pp. 66–109.

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

### Figures

Fig. 1. |

« Previous Article | Next Article »

OSA is a member of CrossRef.