Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Temporal power spectra of irradiance scintillation for infrared optical waves’ propagation through marine atmospheric turbulence

Not Accessible

Your library or personal account may give you access

Abstract

Current theoretical temporal power spectra models of an optical wave have been developed for terrestrial environments. The interactions between humidity and temperature fluctuations in the marine atmospheric environments make the marine atmospheric turbulence particularly challenging, and the optical waves’ propagation through marine turbulence exhibits a different behavior with respect to terrestrial propagation. In this paper, the temporal power spectra of irradiance scintillation under weak marine atmospheric turbulence, which is one of the key temporal statistics to describe the correlation of irradiance fluctuations at different time instances, is investigated in detail both analytically and numerically. Closed-form expressions for the temporal power spectra of irradiance scintillation are derived for infrared plane and spherical waves under weak marine atmospheric turbulence, and they consider physically the influences of finite turbulence inner and outer scales. The final results indicate that the marine atmospheric turbulence brings more effects on the irradiance scintillation than the terrestrial atmospheric turbulence.

© 2014 Optical Society of America

Full Article  |  PDF Article
More Like This
Inferring path average C2n values in the marine environment

Frida Strömqvist Vetelino, Katelyn Grayshan, and Cynthia Y. Young
J. Opt. Soc. Am. A 24(10) 3198-3206 (2007)

Influence of anisotropy of marine turbulence on the variance of optical wave AOA fluctuations

Linyan Cui and Yan Zhang
J. Opt. Soc. Am. A 36(9) 1602-1608 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (41)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved