OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 31, Iss. 9 — Sep. 1, 2014
  • pp: 2046–2054

Focal plane internal energy flows of singular beams in astigmatically aberrated low numerical aperture systems

Monika Bahl and P. Senthilkumaran  »View Author Affiliations

JOSA A, Vol. 31, Issue 9, pp. 2046-2054 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2028 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Singular beams have circulating energy components. When such beams are focused by low numerical aperture systems suffering from astigmatic aberration, these circulating energy components get modified. The phase gradient introduced by this type of aberration splits the higher charge vortices. The dependence of the charge, the aberration coefficient, and the size of the aperture on the nature of the splitting process are reported in this paper. The transverse components of the Poynting vector fields that can be derived from the phase gradient vector field distributions are further decomposed into solenoidal and irrotational components using the Helmholtz–Hodge decomposition method. The solenoidal components relate to the orbital angular momentum of the beams, and the irrotational components are useful in the transport of intensity equations for phase retrieval.

© 2014 Optical Society of America

OCIS Codes
(150.4620) Machine vision : Optical flow
(260.0260) Physical optics : Physical optics
(260.2110) Physical optics : Electromagnetic optics
(350.4855) Other areas of optics : Optical tweezers or optical manipulation
(260.6042) Physical optics : Singular optics

ToC Category:
Physical Optics

Original Manuscript: May 8, 2014
Revised Manuscript: July 22, 2014
Manuscript Accepted: July 30, 2014
Published: August 26, 2014

Monika Bahl and P. Senthilkumaran, "Focal plane internal energy flows of singular beams in astigmatically aberrated low numerical aperture systems," J. Opt. Soc. Am. A 31, 2046-2054 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. V. Kotlyar, A. A. Kovalev, R. V. Skidanov, O. Y. Moiseev, and V. A. Soifer, “Diffraction of a finite-radius plane wave and a Gaussian beam by a helical axicon and a spiral phase plate,” J. Opt. Soc. Am. A 24, 1955–1964 (2007). [CrossRef]
  2. V. V. Kotlyar, A. A. Kovalev, S. N. Khonina, R. V. Skidanov, V. A. Soifer, H. Elfstrom, N. Tossavainen, and J. Turunen, “Diffraction of conic and Gaussian beams by a spiral phase plate,” J. Opt. A Pure Appl. Opt. 45, 2656–2665 (2006).
  3. R. K. Singh, P. Senthilkumaran, and K. Singh, “Influence of astigmatism and defocusing on the focusing of a singular beam,” Opt. Commun. 270, 128–138 (2007). [CrossRef]
  4. R. K. Singh, P. Senthilkumaran, and K. Singh, “Effect of astigmatism on the diffraction of a vortex-carrying beam with Gaussian background,” J. Opt. A Pure Appl. Opt. 9, 543–554 (2007). [CrossRef]
  5. R. K. Singh, P. Senthilkumaran, and K. Singh, “Focusing of a vortex carrying beam with Gaussian background by an apertured system in presence of coma,” Opt. Commun. 281, 923–934 (2008). [CrossRef]
  6. R. K. Singh, P. Senthilkumaran, and K. Singh, “Effect of coma on the focusing of an apertured singular beam,” Opt. Lasers Eng. 45, 488–494 (2007). [CrossRef]
  7. A. Y. Bekshaev and M. S. Soskin, “Transverse energy flows in vectorial fields of paraxial beams with singularities,” Opt. Commun. 271, 332–348 (2007). [CrossRef]
  8. A. Bekshaev, K. Bliokh, and M. Soskin, “Internal flows and energy circulation in light beams,” J. Opt. 13, 053001 (2011). [CrossRef]
  9. M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993). [CrossRef]
  10. A. Y. Bekshaev, M. S. Soskin, and M. V. Vasnetsov, “Transformation of higher-order optical vortices upon focusing by an astigmatic lens,” Opt. Commun. 241, 237–247 (2004). [CrossRef]
  11. A. Y. Bekshaev and A. I. Karamoch, “Astigmatic telescopic transformation of a high-order optical vortex,” Opt. Commun. 281, 5687–5696 (2008). [CrossRef]
  12. E. Abramochkin and V. Volostnikov, “Beam transformations and nontransformed beams,” Opt. Commun. 83, 123–135 (1991). [CrossRef]
  13. S. N. Khonina, V. V. Kotlyar, V. A. Soifer, K. Jefimovs, P. Paakkonen, and J. Turunen, “Astigmatic Bessel laser beams,” J. Mod. Opt. 51, 677–686 (2004). [CrossRef]
  14. V. V. Kotlyar, S. N. Khonina, A. A. Almazov, V. A. Soifer, K. Jefimovs, and J. Turunen, “Elliptic Laguerre-Gaussian beams,” J. Opt. Soc. Am. A 23, 43–56 (2006). [CrossRef]
  15. P. Vaity, J. Banerji, and R. P. Singh, “Measuring the topological charge of an optical vortex by using a tilted convex lens,” Phys. Lett. A 377, 1154–1156 (2013). [CrossRef]
  16. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992). [CrossRef]
  17. A. M. Stewart, “Angular momentum of light,” J. Mod. Opt. 52, 1145–1154 (2005). [CrossRef]
  18. S. F. Arnold, L. Allen, and M. Padgett, “Advances in optical angular momentum,” Laser Photon. Rev. 2, 299–313 (2008). [CrossRef]
  19. A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photon. 3, 161–204 (2011). [CrossRef]
  20. M. R. Teague, “Deterministic phase retrieval: a Green’s function solution,” J. Opt. Soc. Am. 73, 1434–1441 (1983). [CrossRef]
  21. J. Petruccelli, L. Tian, and G. Barbastathis, “The transport of intensity equation for optical path length recovery using partially coherent illumination,” Opt. Express 21, 14430–14441 (2013). [CrossRef]
  22. D. J. Griffiths, Introduction to Electrodynamics (Prentice-Hall, 1999).
  23. H. Weber and G. Arfken, Essential Mathematical Methods for Physicists (Academic, 2003).
  24. K. Polthier and E. Preuss, “Identifying vector field singularities using a discrete Hodge decomposition,” in Visualization and Mathematics III, H. C. Hege and K. Polthier, eds. (Springer-Verlag, 2002), pp. 113–134.
  25. F. M. Denaro, “On the application of the Helmholtz–Hodge decomposition in projection methods for incompressible flows with general boundary conditions,” Int. J. Numer. Methods Fluids 43, 43–69 (2003). [CrossRef]
  26. H. Bhatia, G. Norgard, V. Pascucci, and P. T. Bremer, “The Helmholtz–Hodge decomposition: a survey,” IEEE Trans. Vis. Comput. Graph. 19, 1386–1404 (2013).
  27. M. Bahl and P. Senthilkumaran, “Helmholtz Hodge decomposition of scalar optical fields,” J. Opt. Soc. Am. A 29, 2421–2427 (2012). [CrossRef]
  28. P. Senthilkumaran, F. Wyrowski, and H. Schimmel, “Vortex stagnation problem in iterative Fourier transform algorithms,” Opt. Lasers Eng. 43, 43–56 (2005). [CrossRef]
  29. P. Senthilkumaran and F. Wyrowski, “Phase synthesis in wave-optical engineering: mapping and diffuser-type approaches,” J. Mod. Opt. 49, 1831–1850 (2002). [CrossRef]
  30. D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, 1998).
  31. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003). [CrossRef]
  32. T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997). [CrossRef]
  33. J. O. Castaneda and G. Ramirez, “Zone plates for zero axial irradiance,” Opt. Lett. 18, 87–89 (1993). [CrossRef]
  34. L. E. Helsenth, “Smallest focal hole,” Opt. Commun. 257, 1–8 (2006). [CrossRef]
  35. G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3, 305–310 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited