OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 31, Iss. 9 — Sep. 1, 2014
  • pp: 2070–2074

3D confinement of the focal spot of plasmonic Fresnel zone plate lens using gold bowtie nanoantenna

Di Feng  »View Author Affiliations


JOSA A, Vol. 31, Issue 9, pp. 2070-2074 (2014)
http://dx.doi.org/10.1364/JOSAA.31.002070


View Full Text Article

Enhanced HTML    Acrobat PDF (432 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

By using a gold bowtie nanoantenna at the focal plane of a plasmonic Fresnel zone plate lens, we numerically demonstrate that the focused beam spot can be strongly confined in a three-dimensional (3D) region, which means the focal spot will have high axial resolution as well as high lateral resolution. According to the antenna’s resonance spectrum, the Fresnel zone plate lens is designed at the resonance wavelength of the antenna to get the right diffractive efficiency, and then the antenna will be positioned at the focal plane, so the 3D confined focal spot can be achieved with much higher intensity and much smaller spot size along both axial and transverse directions than that of a lens without using antennas.

© 2014 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(140.4780) Lasers and laser optics : Optical resonators
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optics at Surfaces

History
Original Manuscript: May 22, 2014
Revised Manuscript: July 17, 2014
Manuscript Accepted: August 4, 2014
Published: August 27, 2014

Citation
Di Feng, "3D confinement of the focal spot of plasmonic Fresnel zone plate lens using gold bowtie nanoantenna," J. Opt. Soc. Am. A 31, 2070-2074 (2014)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-31-9-2070


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Fu, Y. Liu, X. Zhou, Z. Xu, and F. Fang, “Experimental investigation of superfocusing of plasmonic lens with chirped circular nanoslits,” Opt. Express 18, 3438–3443 (2010). [CrossRef]
  2. W. Chao, J. Kim, S. Rekawa, P. Fischer, and E. H. Anderson, “Demonstration of 12  nm resolution Fresnel zone plate lens based on soft x-ray microscopy,” Opt. Express 17, 17669–17677 (2009). [CrossRef]
  3. Q. Cao and J. Jahns, “Comprehensive focusing analysis of various Fresnel zone plates,” J. Opt. Soc. Am. A 21, 561–571 (2004). [CrossRef]
  4. M. Kallane, J. Buck, S. Harm, R. Seemann, K. Rossnagel, and L. Kipp, “Focusing light with a reflection photon sieve,” Opt. Lett. 36, 2405–2407 (2011). [CrossRef]
  5. D. N. Black and J. C. Wiltse, “Millimeter-wave characteristics of phase-correcting Fresnel zone plates,” IEEE Trans. Microwave Theory Tech. 35, 1122–1129 (1987). [CrossRef]
  6. D. Feng, C. X. Zhang, and Y. H. Yang, “Comparison of subwavelength focusing properties of diffraction and Fresnel zone plate plasmonic planar lenses,” Optik 124, 4493–4497 (2013). [CrossRef]
  7. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005). [CrossRef]
  8. J. Wang, W. Zhou, E. P. Li, and D. H. Zhang, “Subwavelength focusing using plasmonic wavelength-launched zone plate lenses,” Plasmonics 6, 269–272 (2011). [CrossRef]
  9. Y. Fu, W. Zhou, L. E. Lim, C. L. Du, and X. G. Luo, “Plasmonic microzone plate: superfocusing at visible regime,” Appl. Phys. Lett. 91, 061124 (2007). [CrossRef]
  10. H. C. Kim, H. Ko, and M. S. Cheng, “Optical focusing of plasmonic Fresnel zone plate-based metallic structure covered with a dielectric layer,” J. Vac. Sci. Technol. B 26, 2197–2203 (2008). [CrossRef]
  11. H. F. Shi, C. T. Wang, C. L. Du, X. G. Luo, X. C. Dong, and H. T. Gao, “Beam manipulating by metallic nano slits with variant widths,” Opt. Express 13, 6815–6820 (2005). [CrossRef]
  12. H. F. Shi, C. L. Du, and X. G. Luo, “Focal length modulation based on a metallic slit surrounded with grooves in curved depths,” Appl. Phys. Lett. 91, 093111 (2007). [CrossRef]
  13. J. Wang, F. Qin, D. H. Zhang, D. D. Li, Y. K. Wang, X. N. Shen, T. Xu, and J. H. Teng, “Subwavelength superfocusing with a dipole-wave-reciprocal binary zone plate,” Appl. Phys. Lett. 102, 061103 (2013). [CrossRef]
  14. D. Feng and C. X. Zhang, “Optical focusing by planar lenses based on nano-scale metallic slits in visible range,” Phys. Procedia 22, 428–434 (2011). [CrossRef]
  15. P. M. Uhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005). [CrossRef]
  16. L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. VanDuyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6, 2060–2065 (2006). [CrossRef]
  17. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. Garcia de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003). [CrossRef]
  18. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap dependent optical coupling of single ‘Bowtie’ nanoantennas resonant in the visible,” Nano Lett. 4, 957–961 (2004). [CrossRef]
  19. H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16, 9144–9154 (2008). [CrossRef]
  20. G. Bi, L. Wang, L. Ling, Y. Yokota, Y. Nishijima, K. Ueno, H. Misawa, and J. R. Qiu, “Optical properties of gold nano-bowtie structures,” Opt. Commun. 294, 213–217 (2013). [CrossRef]
  21. F. J. González, J. Alda, B. Ilic, and G. D. Boreman, “Infrared antennas coupled to lithographic Fresnel zone plate lenses,” Appl. Opt. 43, 6067–6073 (2004). [CrossRef]
  22. W. L. Stutzman and A. A. Thiele, Antenna Theory and Design (Wiley, 1996).
  23. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005). [CrossRef]
  24. E. X. Jin and X. Xu, “Plasmonic effects in near-field optical transmission enhancement through a single bowtie-shaped aperture,” Appl. Phys. B 84, 3–9 (2006). [CrossRef]
  25. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
  26. P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75, 024402 (2012). [CrossRef]
  27. J. M. Bendickson, E. N. Glytsis, and T. K. Gaylord, “Scalar integral diffraction methods: unification, accuracy, and comparison with a rigorous boundary element method with application to diffractive cylindrical lenses,” J. Opt. Soc. Am. A 15, 1822–1837 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited