OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 31, Iss. 9 — Sep. 1, 2014
  • pp: 2075–2082

Nonideal ultrathin mantle cloak for electrically large conducting cylinders

Shuo Liu, Hao Chi Zhang, He-Xiu Xu, and Tie Jun Cui  »View Author Affiliations

JOSA A, Vol. 31, Issue 9, pp. 2075-2082 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (823 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Based on the concept of the scattering cancellation technique, we propose a nonideal ultrathin mantle cloak that can efficiently suppress the total scattering cross sections of an electrically large conducting cylinder (over one free-space wavelength). The cloaking mechanism is investigated in depth based on the Mie scattering theory and is simultaneously interpreted from the perspective of far-field bistatic scattering and near-field distributions. We remark that, unlike the perfect transformation-optics-based cloak, this nonideal cloaking technique is mainly designed to minimize simultaneously several scattering multipoles of a relatively large geometry around considerably broad bandwidth. Numerical simulations and experimental results show that the antiscattering ability of the metasurface gives rise to excellent total scattering reduction of the electrically large cylinder and remarkable electric-field restoration around the cloak. The outstanding cloaking performance together with the good features of and ultralow profile, flexibility, and easy fabrication predict promising applications in the microwave frequencies.

© 2014 Optical Society of America

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(160.3918) Materials : Metamaterials
(230.3205) Optical devices : Invisibility cloaks

ToC Category:
Optical Devices

Original Manuscript: May 30, 2014
Manuscript Accepted: July 25, 2014
Published: August 29, 2014

Shuo Liu, Hao Chi Zhang, He-Xiu Xu, and Tie Jun Cui, "Nonideal ultrathin mantle cloak for electrically large conducting cylinders," J. Opt. Soc. Am. A 31, 2075-2082 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623 (2005). [CrossRef]
  2. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006). [CrossRef]
  3. D. Schurig, J. Mock, B. Justice, S. Cummer, J. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006). [CrossRef]
  4. U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006). [CrossRef]
  5. R. Liu, C. Ji, J. Mock, J. Chin, T. Cui, and D. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009). [CrossRef]
  6. H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat. Commun. 1, 21 (2010).
  7. W. X. Jiang, T. J. Cui, X. M. Yang, H. F. Ma, and Q. Cheng, “Shrinking an arbitrary object as one desires using metamaterials,” Appl. Phys. Lett. 98, 204101 (2011). [CrossRef]
  8. P. Zhang, Y. Jin, and S. L. He, “Cloaking an object on a dielectric half-space,” Opt. Express 16, 3161–3166 (2008). [CrossRef]
  9. B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103, 153901 (2009). [CrossRef]
  10. S. Tretyakov, P. Alitalo, O. Luukkonen, and C. Simovski, “Broadband electromagnetic cloaking of long cylindrical objects,” Phys. Rev. Lett. 103, 103905 (2009). [CrossRef]
  11. N. Kundtz, D. Gaultney, and D. R. Smith, “Scattering cross-section of a transformation optics-based metamaterial cloak,” New J. Phys. 12, 043039 (2010). [CrossRef]
  12. X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011). [CrossRef]
  13. C. A. Valagiannopoulos and P. Alitalo, “Electromagnetic cloaking of cylindrical objects by multilayer or uniform dielectric claddings,” Phys. Rev. B 85, 115402 (2012). [CrossRef]
  14. W. X. Jiang, H. F. Ma, Q. A. Cheng, and T. J. Cui, “Virtual conversion from metal object to dielectric object using metamaterials,” Opt. Express 18, 11276–11281 (2010). [CrossRef]
  15. T. J. Cui, D. R. Smith, and R. Liu, Metamaterials—Theory, Design, and Applications (Springer, 2009).
  16. Y. N. Guo, S. B. Liu, X. Zhao, S. Y. Wang, and C. Chen, “Shrinking device realized by using layered structures of homogeneous isotropic materials,” Chin. Phys. B 21, 064101 (2012). [CrossRef]
  17. F. Yang, Z. L. Mei, T. Y. Jin, and T. J. Cui, “DC electric invisibility cloak,” Phys. Rev. Lett. 109, 053902 (2012). [CrossRef]
  18. W. X. Jiang, C. Y. Luo, Z. L. Mei, and T. J. Cui, “An ultrathin but nearly perfect direct current electric cloak,” Appl. Phys. Lett. 102, 014102 (2013). [CrossRef]
  19. Z. L. Mei, Y. S. Liu, F. Yang, and T. J. Cui, “A DC carpet cloak based on resistor networks,” Opt. Express 20, 25758–25765 (2012). [CrossRef]
  20. S. Narayana and Y. Sato, “DC magnetic cloak,” Adv. Mater. 24, 71–74 (2012). [CrossRef]
  21. Y. G. Ma, Y. C. Liu, L. Lan, T. T. Wu, W. Jiang, C. K. Ong, and S. L. He, “First experimental demonstration of an isotropic electromagnetic cloak with strict conformal mapping,” Sci. Rep. 3, 2182 (2013).
  22. D. Rainwater, A. Kerkhoff, K. Melin, J. Soric, G. Moreno, and A. Alù, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys. 14, 013054 (2012). [CrossRef]
  23. X. Wang and E. Semouchkina, “A route for efficient non-resonance cloaking by using multilayer dielectric coating,” Appl. Phys. Lett. 102, 113506 (2013). [CrossRef]
  24. M. Farhat, C. Rockstuhl, and H. Bağcı, “A 3D tunable and multi-frequency graphene plasmonic cloak,” Opt. Express 21, 12592–12603 (2013). [CrossRef]
  25. D. C. Liang, J. Q. Gu, J. G. Han, Y. M. Yang, S. Zhang, and W. L. Zhang, “Robust large dimension terahertz cloaking,” Adv. Mater. 24, 916–921 (2012). [CrossRef]
  26. D. P. Gaillot, C. Croenne, and D. Lippens, “An all-dielectric route for terahertz cloaking,” Opt. Express 16, 3986–3992 (2008). [CrossRef]
  27. J. J. Zhang, L. Liu, Y. Luo, S. Zhang, and N. A. Mortensen, “Homogeneous optical cloak constructed with uniform layered structures,” Opt. Express 19, 8625–8631 (2011). [CrossRef]
  28. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008). [CrossRef]
  29. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009). [CrossRef]
  30. B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106, 033901 (2011). [CrossRef]
  31. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010). [CrossRef]
  32. H. F. Ma, W. X. Jiang, X. M. Yang, X. Y. Zhou, and T. J. Cui, “Compact-sized and broadband carpet cloak and free-space cloak,” Opt. Express 17, 19947–19959 (2009). [CrossRef]
  33. P. Alitalo and S. A. Tretyakov, “Broadband electromagnetic cloaking realized with transmission-line and waveguiding structures,” Proc. IEEE 99, 1646–1659 (2011). [CrossRef]
  34. A. Alù, “Mantle cloak: invisibility induced by a surface,” Phys. Rev. B 80, 245115 (2009). [CrossRef]
  35. M. Silveirinha and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103, 153901 (2009). [CrossRef]
  36. Y. R. Padooru, A. B. Yakovlev, P. Y. Chen, and A. Alù, “Analytical modeling of conformal mantle cloaks for cylindrical objects using sub-wavelength printed and slotted arrays,” J. Appl. Phys. 112, 034907 (2012). [CrossRef]
  37. P. Y. Chen and A. Alù, “Mantle cloaking using thin patterned metasurfaces,” Phys. Rev. B 84, 205110 (2011). [CrossRef]
  38. S. Liu, H. X. Xu, H. C. Zhang, and T. J. Cui, “Tunable ultrathin mantle cloak via varactor-diode-loaded metasurface,” Opt. Express 22, 13403–13417 (2014). [CrossRef]
  39. J. Wang, S. Qu, Z. Xu, H. Ma, J. Zhang, Y. Li, and X. Wang, “Super-thin cloaks based on microwave networks,” IEEE Trans. Antennas Propag. 61, 748–754 (2013). [CrossRef]
  40. C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, 1989), Chap. 8.
  41. M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, 9th ed. (Dover, 1972).
  42. C. Pfeiffer and A. Grbic, “Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110, 197401 (2013). [CrossRef]
  43. P.-Y. Chen, C. Argyropoulos, and A. Alù, “Broadening the cloaking bandwidth with non-Foster metasurfaces,” Phys. Rev. Lett. 111, 233001 (2013). [CrossRef]
  44. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  45. J. C. Soric, P. Y. Chen, A. Kerkhoff, D. Dainwater, K. Melin, and A. Alù, “Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space,” New J. Phys. 15, 033037 (2013). [CrossRef]
  46. C. A. Balanis, Antenna Theory: Analysis and Design (Wiley, 2005).
  47. M. Paquay, J. C. Iriarte, I. Ederra, R. Gonzalo, and P. D. Maagt, “Thin AMC structure for radar cross-section reduction,” Trans. Antenn. Propag. 55, 3630–3638 (2007).
  48. H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110, 014909 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited