OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 31, Iss. 9 — Sep. 1, 2014
  • pp: 2083–2096

Generation and propagation of partially coherent beams with nonconventional correlation functions: a review [Invited]

Yangjian Cai, Yahong Chen, and Fei Wang  »View Author Affiliations


JOSA A, Vol. 31, Issue 9, pp. 2083-2096 (2014)
http://dx.doi.org/10.1364/JOSAA.31.002083


View Full Text Article

Enhanced HTML    Acrobat PDF (2600 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Partially coherent beams with nonconventional correlation functions have displayed many extraordinary properties, such as self-focusing and self-splitting, which are totally different from those of partially coherent beams with conventional Gaussian correlated Schell-model functions and are useful in many applications, such as optical trapping, free-space optical communications, and material thermal processing. In this paper, we present a review of recent developments on generation and propagation of partially coherent beams with nonconventional correlation functions.

© 2014 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(140.3300) Lasers and laser optics : Laser beam shaping
(140.7010) Lasers and laser optics : Laser trapping
(350.5500) Other areas of optics : Propagation

ToC Category:
Coherence and Statistical Optics

History
Original Manuscript: June 12, 2014
Revised Manuscript: July 28, 2014
Manuscript Accepted: July 29, 2014
Published: August 29, 2014

Citation
Yangjian Cai, Yahong Chen, and Fei Wang, "Generation and propagation of partially coherent beams with nonconventional correlation functions: a review [Invited]," J. Opt. Soc. Am. A 31, 2083-2096 (2014)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-31-9-2083


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
  2. E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge University, 2007).
  3. Y. Cai and F. Wang, “Tensor method for treating the propagation of scalar and electromagnetic Gaussian Schell-model beams: a review,” Open Opt. J. 4, 1–20 (2010).
  4. Y. Cai, “Generation of various partially coherent beams and their propagation properties in turbulent atmosphere: a review,” Proc. SPIE 7924, 792402 (2011). [CrossRef]
  5. Y. Cai, F. Wang, C. Zhao, S. Zhu, G. Wu, and Y. Dong, “Partially coherent vector beams: from theory to experiment,” in Vectorial Optical Fields: Fundamentals and Applications, Q. Zhen, ed. (World Scientific, 2013), Chap. 7, pp. 221–273.
  6. X. Liu, F. Wang, C. Wei, and Y. Cai, “Experimental study of turbulence-induced beam wander and deformation of a partially coherent beam,” Opt. Lett. 39, 3336–3339 (2014). [CrossRef]
  7. X. Liu, Y. Shen, L. Liu, F. Wang, and Y. Cai, “Experimental demonstration of vortex phase-induced reduction in scintillation of a partially coherent beam,” Opt. Lett. 38, 5323–5326 (2013). [CrossRef]
  8. F. Wang, X. Liu, L. Liu, Y. Yuan, and Y. Cai, “Experimental study of the scintillation index of a radially polarized beam with controllable spatial coherence,” Appl. Phys. Lett. 103, 091102 (2013). [CrossRef]
  9. Y. Dong, F. Wang, C. Zhao, and Y. Cai, “Effect of spatial coherence on propagation, tight focusing and radiation forces of an azimuthally polarized beam,” Phys. Rev. A 86, 013840 (2012). [CrossRef]
  10. C. Zhao, F. Wang, Y. Dong, Y. Han, and Y. Cai, “Effect of spatial coherence on determining the topological charge of a vortex beam,” Appl. Phys. Lett. 101, 261104 (2012). [CrossRef]
  11. F. Wang, Y. Cai, Y. Dong, and O. Korotkova, “Experimental generation of a radially polarized beam with controllable spatial coherence,” Appl. Phys. Lett. 100, 051108 (2012). [CrossRef]
  12. F. Wang, G. Wu, X. Liu, S. Zhu, and Y. Cai, “Experimental measurement of the beam parameters of an electromagnetic Gaussian Schell-model source,” Opt. Lett. 36, 2722–2724 (2011). [CrossRef]
  13. C. Zhao, Y. Cai, F. Wang, X. Lu, and Y. Wang, “Generation of a high-quality partially coherent dark hollow beam with a multimode fiber,” Opt. Lett. 33, 1389–1391 (2008). [CrossRef]
  14. F. Wang and Y. Cai, “Experimental generation of a partially coherent flat-topped beam,” Opt. Lett. 33, 1795–1797 (2008). [CrossRef]
  15. F. Wang and Y. Cai, “Experimental observation of fractional Fourier transform for a partially coherent optical beam with Gaussian statistics,” J. Opt. Soc. Am. A 24, 1937–1944 (2007). [CrossRef]
  16. Y. Cai and S. He, “Propagation of a partially coherent twisted anisotropic Gaussian Schell-model beam in a turbulent atmosphere,” Appl. Phys. Lett. 89, 041117 (2006). [CrossRef]
  17. J. C. Ricklin and F. M. Davidson, “Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication,” J. Opt. Soc. Am. A 19, 1794–1802 (2002). [CrossRef]
  18. C. Zhao, Y. Cai, X. Lu, and H. T. Eyyuboğlu, “Radiation force of coherent and partially coherent flat-topped beams on a Rayleigh particle,” Opt. Express 17, 1753–1765 (2009). [CrossRef]
  19. C. Zhao, Y. Cai, and O. Korotkova, “Radiation force of scalar and electromagnetic twisted Gaussian Schell-model beams,” Opt. Express 17, 21472–21487 (2009). [CrossRef]
  20. C. Zhao and Y. Cai, “Trapping two types of particles using a focused partially coherent elegant Laguerre–Gaussian beam,” Opt. Lett. 36, 2251–2253 (2011). [CrossRef]
  21. J. Zhang, Z. Wang, B. Cheng, Q. Wang, B. Wu, X. Shen, L. Zheng, Y. Xu, and Q. Lin, “Atom cooling by partially spatially coherent lasers,” Phys. Rev. A 88, 023416 (2013). [CrossRef]
  22. G. R. M. Robb and W. J. Firth, “Collective atomic recoil lasing with a partially coherent pump,” Phys. Rev. Lett. 99, 253601 (2007). [CrossRef]
  23. Y. Cai and S. Zhu, “Ghost imaging with incoherent and partially coherent light radiation,” Phys. Rev. E 71, 056607 (2005). [CrossRef]
  24. T. E. Gureyev, D. M. Paganin, A. W. Stevenson, S. C. Mayo, and S. W. Wilkins, “Generalized eikonal of partially coherent beams and its use in quantitative imaging,” Phys. Rev. Lett. 93, 068103 (2004). [CrossRef]
  25. D. Kermisch, “Partially coherent image processing by laser scanning,” J. Opt. Soc. Am. 65, 887–891 (1975). [CrossRef]
  26. Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53, 1057–1060 (1984). [CrossRef]
  27. A. Belendez, L. Carretero, and A. Fimia, “The use of partially coherent light to reduce the efficiency of silver halide noise gratings,” Opt. Commun. 98, 236–240 (1993). [CrossRef]
  28. M. S. Zubairy and J. K. McIver, “Second-harmonic generation by a partially coherent beam,” Phys. Rev. A 36, 202–206 (1987). [CrossRef]
  29. Y. Cai and U. Peschel, “Second-harmonic generation by an astigmatic partially coherent beam,” Opt. Express 15, 15480–15492 (2007). [CrossRef]
  30. T. van Dijk, D. G. Fischer, T. D. Visser, and E. Wolf, “Effects of spatial coherence on the angular distribution of radiant intensity generated by scattering on a sphere,” Phys. Rev. Lett. 104, 173902 (2010). [CrossRef]
  31. C. Ding, Y. Cai, O. Korotkova, Y. Zhang, and L. Pan, “Scattering-induced changes in the temporal coherence length and the pulse duration of a partially coherent plane-wave pulse,” Opt. Lett. 36, 517–519 (2011). [CrossRef]
  32. E. Wolf and E. Collett, “Partially coherent sources which produce the same far-field intensity distribution as a laser,” Opt. Commun. 25, 293–296 (1978). [CrossRef]
  33. F. Gori, “Collet–Wolf sources and multimode lasers,” Opt. Commun. 34, 301–305 (1980). [CrossRef]
  34. P. de Santis, F. Gori, G. Guattari, and C. Palma, “An example of a Collett–Wolf source,” Opt. Commun. 29, 256–260 (1979). [CrossRef]
  35. A. T. Friberg and R. J. Sudol, “Propagation parameters of Gaussian Schell-model beams,” Opt. Commun 41, 383–387 (1982). [CrossRef]
  36. E. Tervonen, A. T. Friberg, and J. Turunen, “Gaussian Schell-model beams generated with synthetic acousto-optic holograms,” J. Opt. Soc. Am. A 9, 796–803 (1992). [CrossRef]
  37. Q. Lin and Y. Cai, “Tensor ABCD law for partially coherent twisted anisotropic Gaussian-Schell model beams,” Opt. Lett. 27, 216–218 (2002). [CrossRef]
  38. F. Gori and G. Guattari, “Modal expansion for J0-correlated Schell-model sources,” Opt. Commun. 64, 311–316 (1987). [CrossRef]
  39. C. Palma, R. Borghi, and G. Cincotti, “Beams originated by J0-correlated Schell-model planar sources,” Opt. Commun. 125, 113–121 (1996). [CrossRef]
  40. G. Gbur and T. D. Visse, “Can spatial coherence effects produce a local minimum of intensity at focus?” Opt. Lett. 28, 1627–1629 (2003). [CrossRef]
  41. T. van Dijk, G. Gbur, and T. D. Visser, “Shaping the focal intensity distribution using spatial coherence,” J. Opt. Soc. Am. A 25, 575–581 (2008). [CrossRef]
  42. S. B. Raghunathan, T. van Dijk, E. J. G. Peterman, and T. D. Visser, “Experimental demonstration of an intensity minimum at the focus of a laser beam created by spatial coherence: application to the optical trapping of dielectric particles,” Opt. Lett. 35, 4166–4168 (2010). [CrossRef]
  43. F. Gori, M. Santarsiero, and R. Borghi, “Modal expansion for J0-correlated electromagnetic sources,” Opt. Lett. 33, 1857–1859 (2008). [CrossRef]
  44. Y. Gu and G. Gbur, “Scintillation of pseudo-Bessel correlated beams in atmospheric turbulence,” J. Opt. Soc. Am. A 27, 2621–2629 (2010). [CrossRef]
  45. F. Gori and M. Santarsiero, “Devising genuine spatial correlation functions,” Opt. Lett. 32, 3531–3533 (2007). [CrossRef]
  46. F. Gori, V. R. Sanchez, M. Santarsiero, and T. Shirai, “On genuine cross-spectral density matrices,” J. Opt. A 11, 085706 (2009). [CrossRef]
  47. R. Martínez-Herrero, P. M. Mejías, and F. Gori, “Genuine cross-spectral densities and pseudo-modal expansions,” Opt. Lett. 34, 1399–1401 (2009). [CrossRef]
  48. R. Martínez-Herrero and P. M. Mejías, “Elementary-field expansions of genuine cross-spectral density matrices,” Opt. Lett. 34, 2303–2305 (2009). [CrossRef]
  49. L. Waller, G. Situ, and J. W. Fleischer, “Phase-space measurement and coherence synthesis of optical beams,” Nat. Photonics 6, 474–479 (2012). [CrossRef]
  50. H. Lajunen and T. Saastamoinen, “Propagation characteristics of partially coherent beams with spatially varying correlations,” Opt. Lett. 36, 4104–4106 (2011). [CrossRef]
  51. Z. Tong and O. Korotkova, “Electromagnetic nonuniformly correlated beam,” J. Opt. Soc. Am. A 29, 2154–2158 (2012). [CrossRef]
  52. H. Lajunen and T. Saastamoinen, “Non-uniformly correlated partially coherent pulses,” Opt. Lett. 21, 190–195 (2013).
  53. C. Ding, Y. Cai, Y. Zhang, H. Wang, Z. Zhao, and L. Pan, “Stochastic electromagnetic plane-wave pulse with non-uniform correlation distribution,” Phys. Lett. A 377, 1563–1565 (2013). [CrossRef]
  54. S. Sahin and O. Korotkova, “Light sources generating far fields with tunable flat profiles,” Opt. Lett. 37, 2970–2972 (2012). [CrossRef]
  55. O. Korotkova, S. Sahin, and E. Shchepakina, “Multi-Gaussian Schell-model beams,” J. Opt. Soc. Am. A 29, 2159–2164 (2012). [CrossRef]
  56. Z. Mei, O. Korotkova, and E. Shchepakina, “Electromagnetic multi-Gaussian Schell-model beams,” J. Opt. 15, 025705 (2013). [CrossRef]
  57. O. Korotkova, “Random sources for rectangularly-shaped far fields,” Opt. Lett. 39, 64–67 (2014). [CrossRef]
  58. Y. Zhang and Y. Cai, “Random source generating far field with elliptical flat-topped beam profile,” J. Opt. 16, 075704 (2014).
  59. Y. Zhang, L. Liu, C. Zhao, and Y. Cai, “Multi-Gaussian Schell-model vortex beam,” Phys. Lett. A 378, 750–754 (2014). [CrossRef]
  60. Z. Mei and O. Korotkova, “Random sources generating ring-shaped beams,” Opt. Lett. 38, 91–93 (2013). [CrossRef]
  61. Y. Chen, L. Liu, F. Wang, C. Zhao, and Y. Cai, “Elliptical Laguerre–Gaussian correlated Schell-model beam,” Opt. Express 22, 13975–13987 (2014). [CrossRef]
  62. Y. Chen, F. Wang, C. Zhao, and Y. Cai, “Experimental demonstration of a Laguerre–Gaussian correlated Schell-model vortex beam,” Opt. Express 22, 5826–5838 (2014). [CrossRef]
  63. Z. Mei and O. Korotkova, “Cosine-Gaussian Schell-model sources,” Opt. Lett. 38, 2578–2580 (2013). [CrossRef]
  64. C. Liang, F. Wang, X. Liu, Y. Cai, and O. Korotkova, “Experimental generation of cosine Gaussian-correlated Schell-model beams with rectangular symmetry,” Opt. Lett. 39, 769–772 (2014). [CrossRef]
  65. C. Ding, O. Korotkova, Y. Zhang, and L. Pan, “Cosine-Gaussian correlated Schell-model pulsed beams,” Opt. Express 22, 931–942 (2014). [CrossRef]
  66. Y. Chen, F. Wang, L. Liu, C. Zhao, Y. Cai, and O. Korotkova, “Generation and propagation of a partially coherent vector beam with special correlation functions,” Phys. Rev. A 89, 013801 (2014). [CrossRef]
  67. Z. Tong and O. Korotkova, “Non-uniformly correlated light beams in uniformly correlated media,” Opt. Lett. 37, 3240–3242 (2012). [CrossRef]
  68. Y. Gu and G. Gbur, “Scintillation of nonuniformly correlated beams in atmospheric turbulence,” Opt. Lett. 38, 1395–1397 (2013). [CrossRef]
  69. S. Du, Y. Yuan, C. Liang, and Y. Cai, “Second-order moments of a multi-Gaussian Schell-model beam in a turbulent atmosphere,” Opt. Laser Technol. 50, 14–19 (2013). [CrossRef]
  70. Y. Yuan, X. Liu, F. Wang, Y. Chen, Y. Cai, J. Qu, and H. T. Eyyuboğlu, “Scintillation index of a multi-Gaussian Schell-model beam in turbulent atmosphere,” Opt. Commun. 305, 57–65 (2013). [CrossRef]
  71. J. Cang, P. Xiu, and X. Liu, “Propagation of Laguerre–Gaussian and Bessel–Gaussian Schell-model beams through paraxial optical system in turbulent atmosphere,” Opt. Laser Technol. 54, 35–41 (2013). [CrossRef]
  72. Z. Mei, E. Shchepakin, and O. Korotkova, “Electromagnetic non-uniformly correlated beams in turbulent atmosphere,” Opt. Express 21, 17512–17519 (2013). [CrossRef]
  73. R. Chen, L. Liu, S. Zhu, G. Wu, F. Wang, and Y. Cai, “Statistical properties of a Laguerre–Gaussian Schell-model beam in turbulent atmosphere,” Opt. Express 22, 1871–1883 (2014). [CrossRef]
  74. O. Korotkova and E. Shchepakina, “Rectangular multi-Gaussian Schell-model beams in atmospheric turbulence,” J. Opt. 16, 045704 (2014). [CrossRef]
  75. Y. Chen and Y. Cai, “Generation of a controllable optical cage by focusing a Laguerre–Gaussian correlated Schell-model beam,” Opt. Lett. 39, 2549–2552 (2014). [CrossRef]
  76. Y. Zhan and D. Zhao, “Scattering of multi-Gaussian Schell-model beams on a random medium,” Opt. Express 21, 24781–24792 (2013). [CrossRef]
  77. F. Wang, X. Liu, Y. Yuan, and Y. Cai, “Experimental generation of partially coherent beams with different complex degrees of coherence,” Opt. Lett. 38, 1814–1816 (2013). [CrossRef]
  78. F. Gori, “Matrix treatment for partially polarized partially coherent beams,” Opt. Lett. 23, 241–243 (1998). [CrossRef]
  79. Y. Zhang, B. Ding, and T. Suyama, “Trapping two types of particles using a double-ring-shaped radially polarized beam,” Phys. Rev. A 81, 023831 (2010). [CrossRef]
  80. P. Xu, X. He, J. Wang, and M. Zhan, “Trapping a single atom in a blue detuned optical bottle beam trap,” Opt. Lett. 35, 2164–2166 (2010). [CrossRef]
  81. Z. Wang, Q. Lin, and Y. Wang, “Control of atomic rotation by elliptical hollow beam carrying zero angular momentum,” Opt. Commun. 240, 357–362 (2004). [CrossRef]
  82. J. Lancis, V. Torres-Company, E. Silvestre, and P. Andrés, “Space–time analogy for partially coherent plane-wave-type pulses,” Opt. Lett. 30, 2973–2975 (2005). [CrossRef]
  83. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1, 1–57 (2009). [CrossRef]
  84. Y. Dong, Y. Cai, C. Zhao, and M. Yao, “Statistics properties of a cylindrical vector partially coherent beam,” Opt. Express 19, 5979–5992 (2011). [CrossRef]
  85. J. Tervo, T. Setälä, and A. T. Friberg, “Degree of coherence for electromagnetic fields,” Opt. Express 11, 1137–1143 (2003). [CrossRef]
  86. G. Wu, F. Wang, and Y. Cai, “Coherence and polarization properties of a radially polarized beam with variable spatial coherence,” Opt. Express 20, 28301–28318 (2012). [CrossRef]
  87. S. Zhu, X. Zhu, L. Liu, F. Wang, and Y. Cai, “Theoretical and experimental studies of the spectral changes of a polychromatic partially coherent radially polarized beam,” Opt. Express 21, 27682–27696 (2013). [CrossRef]
  88. Y. Cai and Q. Lin, “Hollow elliptical Gaussian beam and its propagation through aligned and misaligned paraxial optical systems,” J. Opt. Soc. Am. A 21, 1058–1065 (2004). [CrossRef]
  89. Y. Cai, X. Lu, and Q. Lin, “Hollow Gaussian beam and its propagation properties,” Opt. Lett. 28, 1084–1086 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited