OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 31, Iss. 9 — Sep. 1, 2014
  • pp: 2105–2108

An improved algorithm to reduce noise in high-order thermal ghost imaging

Xi-Hao Chen, Shuang-Shuang Wu, Wei Wu, Wang-Yuan Guo, Shao-Ying Meng, Zhi-Bin Sun, Guang-Jie Zhai, Ming-Fei Li, and Ling-An Wu  »View Author Affiliations


JOSA A, Vol. 31, Issue 9, pp. 2105-2108 (2014)
http://dx.doi.org/10.1364/JOSAA.31.002105


View Full Text Article

Enhanced HTML    Acrobat PDF (276 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A modified Nth-order correlation function is derived that can effectively remove the noise background encountered in high-order thermal light ghost imaging (GI). Based on this, the quality of the reconstructed images in an Nth-order lensless GI setup has been greatly enhanced compared to former high-order schemes for the same sampling number. In addition, the dependence of the visibility and signal-to-noise ratio for different high-order images on the sampling number has been measured and compared.

© 2014 Optical Society of America

OCIS Codes
(030.0030) Coherence and statistical optics : Coherence and statistical optics
(110.6820) Imaging systems : Thermal imaging
(270.0270) Quantum optics : Quantum optics

ToC Category:
Imaging Systems

History
Original Manuscript: July 3, 2014
Manuscript Accepted: August 4, 2014
Published: August 29, 2014

Citation
Xi-Hao Chen, Shuang-Shuang Wu, Wei Wu, Wang-Yuan Guo, Shao-Ying Meng, Zhi-Bin Sun, Guang-Jie Zhai, Ming-Fei Li, and Ling-An Wu, "An improved algorithm to reduce noise in high-order thermal ghost imaging," J. Opt. Soc. Am. A 31, 2105-2108 (2014)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-31-9-2105


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Z. Cao, G. J. Ge, and K. G. Wang, “Two-photon subwavelength lithography with thermal light,” Appl. Phys. Lett. 97, 051105 (2010). [CrossRef]
  2. P. Clemente, V. Durn, V. Torres-Company, E. Tajahuerce, and J. Lancis, “Optical encryption based on computational ghost imaging,” Opt. Lett. 35, 2391–2393 (2010). [CrossRef]
  3. C. Q. Zhao, W. L. Gong, M. L. Chen, E. R. Li, H. Wang, W. D. Xu, and S. S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012). [CrossRef]
  4. T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995). [CrossRef]
  5. J. Cheng and S. S. Han, “Incoherent coincidence imaging and its applicability in X-ray diffraction,” Phys. Rev. Lett. 92, 093903 (2004). [CrossRef]
  6. F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005). [CrossRef]
  7. D. Z. Cao, J. Xiong, and K. G. Wang, “Geometrical optics in correlated imaging systems,” Phys. Rev. A 71, 013801 (2005). [CrossRef]
  8. Y. J. Cai and S. Y. Zhu, “Ghost imaging with incoherent and partially coherent light radiation,” Phys. Rev. E 71, 056607 (2005). [CrossRef]
  9. D. Zhang, Y.-H. Zhai, L.-A. Wu, and X.-H. Chen, “Correlated two-photon imaging with true thermal light,” Opt. Lett. 30, 354–356 (2005).
  10. X.-H. Chen, Q. Liu, K.-H. Luo, and L.-A. Wu, “Lensless ghost imaging with true thermal light,” Opt. Lett. 34, 695–697 (2009). [CrossRef]
  11. A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005). [CrossRef]
  12. J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802(R) (2008). [CrossRef]
  13. Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 053840 (2009). [CrossRef]
  14. W. L. Gong and S. S. Han, “Correlated imaging in scattering media,” Opt. Lett. 36, 394–396 (2011). [CrossRef]
  15. J. Cheng, “Ghost imaging through turbulent atmosphere,” Opt. Express 17, 7916–7921 (2009). [CrossRef]
  16. P. L. Zhang, W. L. Gong, X. Shen, and S. S. Han, “Correlated imaging through atmospheric turbulence,” Phys. Rev. A 82, 033817 (2010). [CrossRef]
  17. R. E. Meyers, K. S. Deacon, and Y. H. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett. 98, 111115 (2011). [CrossRef]
  18. F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010). [CrossRef]
  19. O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009). [CrossRef]
  20. L.-A. Wu and K.-H. Luo, “Two-photon imaging with entangled and thermal light,” in 75 Years of Quantum Entanglement: Foundations and Information Theoretic Applications, D. Home, G. Kar, and A. S. Majumdar, eds. (AIP, 2011), Vol. 1384, p. 223.
  21. K.-H. Luo, B.-Q. Huang, W.-M. Zheng, and L.-A. Wu, “Nonlocal imaging by conditional averaging of random reference measurements,” Chin. Phys. Lett. 29, 074216 (2012). [CrossRef]
  22. M.-F. Li, Y.-R. Zhang, K.-H. Luo, L.-A. Wu, and H. Fan, “Time-correspondence differential ghost imaging,” Phys. Rev. A 87, 033813 (2013). [CrossRef]
  23. M.-F. Li, Y.-R. Zhang, X.-F. Liu, X.-R. Yao, K.-H. Luo, H. Fan, and L.-A. Wu, “A double-threshold technique for fast time-correspondence imaging,” Appl. Phys. Lett. 103, 211119 (2013). [CrossRef]
  24. T. Richter, “Interference and quantum effects in third-order spatial intensity correlations,” Phys. Rev. A 42, 1817–1820 (1990). [CrossRef]
  25. Y. F. Bai and S. S. Han, “Ghost imaging with thermal light by third-order correlation,” Phys. Rev. A. 76, 043828 (2007). [CrossRef]
  26. H.-G. Li, Y.-T. Zhang, D. Z. Cao, J. Xiong, and K.-G. Wang, “Third-order ghost interference with thermal light,” Chin. Phys. B 17, 4510–4515 (2008). [CrossRef]
  27. Q. Liu, X.-H. Chen, K.-H. Luo, W. Wu, and L.-A. Wu, “Role of multiphoton bunching in high-order ghost imaging with thermal light sources,” Phys. Rev. A. 79, 053844 (2009). [CrossRef]
  28. I. N. Agafonov, M. V. Chekhova, T. S. Iskhakov, and A. N. Penin, “High-visibility multiphoton interference of Hanbury Brown–Twiss type for classical light,” Phys. Rev. A. 77, 053801 (2008). [CrossRef]
  29. D. Z. Cao, J. Xiong, S. H. Zhang, L. F. Lin, L. Gao, and K. G. Wang, “Enhancing visibility and resolution in Nth-order intensity correlation of thermal light,” Appl. Phys. Lett. 92, 201102 (2008). [CrossRef]
  30. K. W. Clifford Chan, M. N. O’Sullivan, and R. W. Boyd, “High-order thermal ghost imaging,” Opt. Lett. 34, 3343–3345 (2009). [CrossRef]
  31. K. W. Clifford Chan, M. N. O’Sullivan, and R. W. Boyd, “Optimization of thermal ghost imaging high-order correlations versus background subtraction,” Opt. Express 18, 5562–5573 (2010). [CrossRef]
  32. X.-H. Chen, I. N. Agafonov, K.-H. Luo, Q. Liu, R. Xian, M. V. Chekhova, and L.-A. Wu, “High-visibility, high-order lensless ghost imaging with thermal light,” Opt. Lett. 35, 1166–1168 (2010). [CrossRef]
  33. J. B. Liu and Y. H. Shih, “Nth-order coherence of thermal light,” Phys. Rev. A 79, 023819 (2009). [CrossRef]
  34. Y. Zhou, J. Simon, J. B. Liu, and Y. H. Shih, “Third-order correlation function and ghost imaging of chaotic thermal light in the photon counting regime,” Phys. Rev. A. 81, 043831 (2010). [CrossRef]
  35. Y. Zhou, J. B. Liu, J. Simon, and Y. H. Shih, “Resolution enhancement of third-order thermal light ghost imaging in the photon counting regime,” J. Opt. Soc. Am. B 29, 377–381 (2012). [CrossRef]
  36. H. Li, J. H. Shi, Z. P. Chen, and G. H. Zeng, “Detailed quality analysis of ideal high-order thermal ghost imaging,” J. Opt. Soc. Am. A 29, 2256–2262 (2012). [CrossRef]
  37. X.-H. Chen, W. Chen, S.-Y. Meng, W. Wu, L.-A. Wu, and G.-J. Zhai, “Role of intensity fluctuations in third-order correlation double-slit interference of thermal light,” J. Opt. Soc. Am. A 30, 1422–1425 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited