## Review of some inverse methods in electromagnetics

JOSA A, Vol. 4, Issue 1, pp. 281-291 (1987)

http://dx.doi.org/10.1364/JOSAA.4.000281

Enhanced HTML Acrobat PDF (1164 KB)

### Abstract

The purpose of this paper is to review some of the inverse methods in electromagnetics for the reconstruction of one-dimensional complex refractive-index profiles, using transient or spectral data. Two different categories of inversion schemes, viz., the differential-inverse and integral-inverse algorithms, are discussed.

© 1987 Optical Society of America

**History**

Original Manuscript: May 2, 1986

Manuscript Accepted: September 26, 1986

Published: January 1, 1987

**Citation**

T. M. Habashy and R. Mittra, "Review of some inverse methods in electromagnetics," J. Opt. Soc. Am. A **4**, 281-291 (1987)

http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-4-1-281

Sort: Year | Journal | Reset

### References

- A. J. Devaney, ed., Inverse Problems in Propagation and Scattering, feature section of J. Opt. Soc. Am. A 2, 1902–2061 (1985).
- A. M. Bruckstein, B. C. Levy, T. Kailath, “Differential methods in inverse scattering,” SIAM J. Appl. Math. 45, 312–335 (1985). [CrossRef]
- A. E. Yagle, “Layer stripping solutions of inverse seismic problems,” Ph.D. dissertation (Massachusetts Institute of Technology, Cambridge, Mass., 1985).
- A. E. Yagle, B. C. Levy, “Application of the Schur algorithm to the inverse problem for a layered acoustic medium,”J. Acoust. Soc. Am. 76, 301–308 (1984). [CrossRef]
- A. E. Yagle, B. C. Levy, “A fast algorithm solution of the inverse problem for a layered acoustic medium probed by spherical harmonic waves,”J. Acoust. Soc. Am. 78, 729–737 (1985). [CrossRef]
- A. E. Yagle, B. C. Levy, “The Schur algorithm and its applications,” Acta Appl. Math. 3, 255–284 (1985). [CrossRef]
- B. C. Levy, “Layer by layer reconstruction methods for the earth resistivity from direct current measurements,”IEEE Trans. Geosci. Remote Sensing GE-23, 841–850 (1985). [CrossRef]
- T. M. Habashy, R. Mittra, “On some inverse methods in electromagnetics,”J. Electromag. Waves Appl. (to be published).
- K. B. Bube, R. Burridge, “The one-dimensional inverse problem of reflection seismology,” SIAM Rev. 25, 497–559 (1983). [CrossRef]
- F. Santosa, H. Schwetlick, “The inversion of acoustical impedance profile by methods of characteristics,” Wave Motion 4, 99–110 (1982). [CrossRef]
- A. Sezginer, “Forward and inverse problems in transient electromagnetic fields,” Ph.D. dissertation (Massachusetts Institute of Technology, Cambridge, Mass., 1985).
- A. Sezginer, “Profile inversion by method of characteristics in a lossy, cylindrical medium,” presented at the National Radio Science Meeting, Boston, Mass., June 25–29, 1984.
- T. M. Habashy, A. Sezginer, W. C. Chew, “Simultaneous inversion of radially varying conductivity and permittivity profiles,” presented at the International Geoscience and Remote Sensing Symposium, Amherst, Mass., October 7–9, 1985.
- E. A. Robinson, “Dynamic predictive deconvolution,” Geophys. Prospect. 23, 779–797 (1975). [CrossRef]
- A. Roger, D. Maystre, M. Cadilhac, “On a problem of inverse scattering in optics: the dielectric inhomogeneous medium,”J. Opt. (Paris) 9, 83–90 (1978). [CrossRef]
- W. C. Chew, S. L. Chuang, “Profile inversion of a planar medium with a line source or a point source,” presented at the International Geoscience and Remote Sensing Symposium, Strasbourg, France, August 27–30, 1984.
- S. Coen, K. K. Mei, D. J. Angelakos, “Inverse scattering technique applied to remote sensing of layered media,”IEEE Trans. Antennas Propag. AP-29, 298–306 (1981). [CrossRef]
- A. G. Tijhuis, C. Van Der Worm, “Iterative approach to the frequency-domain solution of the inverse-scattering problem for an inhomogeneous lossless dielectric slab,”IEEE Trans. Antennas Propag. AP-32, 711–716 (1984). [CrossRef]
- D. Lesselier, “Optimization techniques and inverse problems: reconstruction of conductivity profiles in the time domain,”IEEE Trans. Antennas Propag. AP-30, 59–65 (1982). [CrossRef]
- A. G. Tijhuis, “Iterative determination of permittivity and conductivity profiles of a dielectric slab in the time domain,”IEEE Trans. Antennas Propag. AP-29, 239–245 (1981). [CrossRef]
- T. M. Habashy, W. C. Chew, E. Y. Chow, “Simultaneous reconstruction of permittivity and conductivity profiles in a radially inhomogeneous slab,” Radio Sci. 21, 635–645 (1986). [CrossRef]
- W. Tabbara, “Reconstruction of permittivity profiles from a spectral analysis of the reflection coefficient,”IEEE Trans. Antennas Propag. AP-27, 241–248 (1979). [CrossRef]
- J. A. Kong, Theory of Electromagnetic Waves (Wiley, New York, 1975).
- N. Bleistein, J. K. Cohen, “Nonuniqueness in the inverse source problem in acoustics and electromagnetics,”J. Math. Phys. 18, 194–201 (1977). [CrossRef]
- A. J. Devaney, G. C. Sherman, “Nonuniqueness in inverse source and scattering problems,”IEEE Trans. Antennas Propag. AP-30, 1034–1037 (1982). [CrossRef]
- A. J. Devaney, E. Wolf, “Radiating and nonradiating classical current distributions and the fields they generate,” Phys. Rev. D 8, 1044–1047 (1973). [CrossRef]
- C. T. H. Baker, The Numerical Treatment of Integral Equations (Clarendon, Oxford, 1977).
- S. Twomey, Introduction to the Mathematics of Inversion in Remote Sensing and Indirect Measurements (Elsevier, New York, 1977).
- P. C. Sabatier, ed., Applied Inverse Problems (Springer-Verlag, Berlin, 1978). [CrossRef]
- I. M. Gelfand, B. M. Levitan, “On the determination of a differential equation from its spectral measure function,” Am. Math. Soc. 1, 253–304 (1955).
- L. D. Faddeyev, B. Seckler, “The inverse problem in the quantum theory of scattering,”J. Math. Phys. 4, 72–103 (1963). [CrossRef]
- Z. S. Agranovich, V. A. Marchenko, The Inverse Problem of Scattering Theory (Gordon and Breach, New York, 1963).
- I. Kay, H. E. Moses, Inverse Scattering Papers: 1955–1963, Vol. 12 of Lie Groups: History Frontiers and Applications (Mathematical Science, Mass.1982).
- G. L. Lamb, Elements of Soliton Theory (Wiley-Interscience, New York, 1980).
- K. Chadan, P. C. Sabatier, Inverse Problems in Quantum Scattering Theory (Springer-Verlag, New York, 1977). [CrossRef]
- S. Coen, “On the elastic profiles of a layered medium from reflection data. Part I. Plane-wave sources,”J. Acoust. Soc. Am. 70, 172–175 (1981). [CrossRef]
- S. Coen, “Density and compressibility profiles of a layered acoustic medium from precritical incidence data,” Geophysics 46, 1244–1246 (1981). [CrossRef]
- S. Coen, “Inverse scattering of the permittivity and permeability profiles of a plane stratified medium,”J. Math. Phys. 22, 1127–1129 (1981). [CrossRef]
- R. J. Krueger, “An inverse problem for an absorbing medium with multiple discontinuities,”Q. Appl. Math. 34, 129–147 (1976).
- R. J. Krueger, “An inverse problem for a dissipative hyperbolic equation with discontinuous coefficients,”Q. Appl. Math. 36, 235–253 (1978).
- R. J. Krueger, “Numerical aspects of a dissipative inverse problem,”IEEE Trans. Antennas Propag. AP-29, 253–261 (1981). [CrossRef]
- M. Jaulent, “Inverse scattering problems in absorbing media,”J. Math. Phys. 17, 1351–1360 (1976). [CrossRef]
- V. H. Weston, “On the inverse problem for a hyperbolic dispersive partial differential equation,”J. Math. Phys. 13, 1952–1956 (1972). [CrossRef]
- V. H. Weston, “On inverse scattering,”J. Math. Phys. 15, 209–213 (1974). [CrossRef]
- S. Coen, “The inverse problem of the direct current conductivity profile of a layered earth,” Geophysics 46, 1702–1713 (1981). [CrossRef]
- D. H. Schaubert, “Spectral domain methods for remote probing of stratified media,” Ph.D. dissertation (University of Illinois, Urbana, Ill., 1974).
- D. H. Schaubert, R. Mittra, “A spectral domain method for remotely probing stratified media,”IEEE Trans. Antennas Propag. AP-25, 261–265 (1977). [CrossRef]
- R. Mittra, T. M. Habashy, “Profile inversion of radially inhomogeneous media with a single frequency measurement,” presented at the National Radio Science Meeting, Boston, Mass., June 25–29, 1984.
- T. M. Habashy, R. Mittra, “Time domain profile inversion of a cylindrically stratified medium,” presented at the National Radio Science Meeting, Boston, Mass., June 25–29, 1984.
- S. Coen, “Velocity and density profiles of a layered acoustic medium from common source-point data,” Geophysics 47, 898–905 (1982). [CrossRef]
- R. Burridge, “The Gelfand–Levitan, the Marchenko, and the Gopinath–Sondhi integral equations of inverse scattering theory, regarded in the context of inverse impulse-response problems,” Wave Motion 2, 305–323 (1980). [CrossRef]
- M. M. Sondhi, B. Gopinath, “Determination of vocal-tract shape from impulse response at the lips,”J. Acoust. Soc. Am. 49, 1867–1873 (1970). [CrossRef]
- B. Gopinath, M. M. Sondhi, “Inversion of the telegraph equation and the synthesis of nonuniform lines,” Proc. IEEE 59, 383–392 (1971). [CrossRef]
- R. G. Newton, “Inversion of reflection data for layered media: a review of exact methods,” Geophys. J. R. Astron. Soc. 65, 191–215 (1981). [CrossRef]
- G. N. Balanis, “The plasma inverse problem,”J. Math. Phys. 13, 1001–1005 (1972). [CrossRef]
- S. Coen, “Inverse scattering of a layered and dispersionless dielectric half-space, part I: reflection data from plane waves at normal incidence,”IEEE Trans. Antennas Propag. AP-29, 726–732 (1981). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.