Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Monte Carlo calculation of backscattering enhancement for a randomly rough grating

Not Accessible

Your library or personal account may give you access

Abstract

A Monte Carlo calculation of diffuse scattered intensity of p-polarized light from a randomly rough Ag grating shows enhancement in the backward direction, as predicted in perturbation theory by the selective summation of maximally crossed diagrams for the resonantly excited surface polaritons.

© 1988 Optical Society of America

Full Article  |  PDF Article
More Like This
Localization effects in the elastic scattering of light from a randomly rough surface

Arthur R. McGurn and Alexei A. Maradudin
J. Opt. Soc. Am. B 4(6) 910-926 (1987)

Backscattering enhancement of electromagnetic waves from two-dimensional perfectly conducting random rough surfaces based on Monte Carlo simulations

Kyung Pak, Leung Tsang, Chi H. Chan, and Joel Johnson
J. Opt. Soc. Am. A 12(11) 2491-2499 (1995)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.