OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 5, Iss. 5 — May. 1, 1988
  • pp: 648–659

Bright-field microscopy of semitransparent objects

Gregory Stagaman and James M. Forsyth  »View Author Affiliations

JOSA A, Vol. 5, Issue 5, pp. 648-659 (1988)

View Full Text Article

Enhanced HTML    Acrobat PDF (1429 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We examine theoretically and experimentally the characteristics of in-focus and out-of-focus images of simple, well-defined phase objects. Theoretical calculations are based on the theory of partial coherence, and a simple calculation for imaging with coherent light demonstrates distinctive aspects of bright-field images. Experiments are performed with a well-corrected microscope, equipped for the precise control of illumination conditions and focus position. Theoretical and experimental results agree, although the contrast in the experimental images is often lower than expected. Also verified by experiment is a (to our knowledge) previously uninvestigated linear response in the intensity modulation of defocused, coherent images of thin, phase objects. The near-focus behavior of phase object images differs in symmetry from the more-familiar behavior of opaque object images.

© 1988 Optical Society of America

Original Manuscript: August 3, 1987
Manuscript Accepted: December 31, 1987
Published: May 1, 1988

Gregory Stagaman and James M. Forsyth, "Bright-field microscopy of semitransparent objects," J. Opt. Soc. Am. A 5, 648-659 (1988)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. H. Hopkins, “Phase objects as seen in the ordinary microscope,” in, Contraste de Phase et Contraste par Interférences, M. Françon, ed. (Editions de la Revue d’Optique Théorique et Instrumentale, Paris, 1952), pp. 142–152.
  2. F. Zernike, “Das Phasenkontrastverfahren bei der Mikroskopischen Beobachtung,” Z. Tech. Phys. 16, 454–457 (1935).
  3. G. Nomarski, “Microinterférometric différentielle à ondes polarisées,” J. Phys. Radium 16, 9S–13S (1955).
  4. D. Brewster, “Report on the recent progress of optics,” in Report of the British Association for the Advancement of Science (Murray, London, 1833), Vol. 2, pp. 308–322.
  5. R. Hooke, “Microscopium,” in Lectures and Collections Made by Robert Hooke (Martyn, London, 1678), pp. 81–112.
  6. Y. Ichioka, K. Yamamoto, T. Suzuki, “Defocused image of a periodic complex object in an optical system under partially coherent illumination,” J. Opt. Soc. Am. 66, 932–938 (1976). [CrossRef]
  7. M. Françon, Contraste de Phase en Optique et en Microscopie (Editions de la Revue d’Optique Théorique et Instrumentale, Paris, 1950), pp. 35–39.
  8. H. H. Hopkins, “The concept of partial coherence in optics,” Proc. R. Soc. London Ser. A 208, 263–277 (1951). [CrossRef]
  9. N. Streibl, “Three-dimensional imaging in the microscope,” J. Opt. Soc. Am. A 2, 121–127 (1985). [CrossRef]
  10. W. N. Charman, “Some experimental measurements of diffraction images in low-resolution microscopy,” J. Opt. Soc. Am. 53, 410–414 (1963). [CrossRef]
  11. B. M. Watrasiewicz, “Theoretical calculations of images of straight edges in partially coherent illumination,” Opt. Acta 12, 391–400 (1965). [CrossRef]
  12. M. Born, E. Wolf, Principles of Optics, 6th. ed. (Pergamon, Oxford, 1980).
  13. M. M. O’Toole, “Simulation of optically formed profiles in positive photoresist,” Memo. No. UCB/ERL M79/42, Electronics Research Laboratory (University of California, Berkeley, Calif., 1979), pp. 5–23.
  14. M. D. Levenson, D. S. Goodman, S. Lindsey, P. W. Bayer, H. A. E. Santini, “The phase shifting mask II: imaging simulations and submicrometer resist exposures,” IEEE Trans. Electron Devices ED-31, 753–763 (1984). [CrossRef]
  15. A. E. Rosenbluth, D. Goodman, B. J. Lin, “A critical examination of submicron optical lithography using simulated projection images,” J. Vac. Sci. Technol. B 1, 1190–1195 (1983). [CrossRef]
  16. K. J. Castleman, Digital Image Processing (Prentice-Hall, Englewood Cliffs, N.J., 1979), pp. 354–360.
  17. A. Erhardt, G. Zinser, D. Komitowski, J. Bille, “Reconstructing 3-D light microscopic images by digital image processing,” Appl. Opt. 24, 194–200 (1985). [CrossRef] [PubMed]
  18. E. Evans, “Comparison of the diffraction theory of image formation with the three-dimensional, first Born scattering approximation in lens systems,” Opt. Commun. 2, 317–320 (1970). [CrossRef]
  19. J. Goodman, Statistical Optics (Wiley, New York, 1985).
  20. B. Richards, E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser. A 253, 358–379 (1959). [CrossRef]
  21. See Ref. 11, p. 482.
  22. P. M. Stokseth, “Properties of a defocused optical system,” J. Opt. Soc. Am. 59, 1314–1321 (1969). [CrossRef]
  23. See Ref. 11, p. 529.
  24. H. H. Hopkins, “Applications of coherence theory in microscopy and interferometry,” J. Opt. Soc. Am. 47, 508–526 (1957). [CrossRef]
  25. K. Yamamoto, Y. Ichioka, T. Suzuki, “Influence of light coherence at the exit pupil of the condenser on the image formation,” Opt. Acta 23, 987–996 (1976). [CrossRef]
  26. R. E. Swing, “Conditions for microdensitometer linearity,” J. Opt. Soc. Am. 62, 199–207 (1972). [CrossRef]
  27. P. N. T. Unwin, R. Henderson, “Molecular structure determination by electron microscopy of unstained crystalline specimens,” J. Mol. Biol. 94, 425–440 (1975). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited