OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 5, Iss. 5 — May. 1, 1988
  • pp: 713–720

Imaging of Gaussian Schell-model sources

Ari T. Friberg and Jari Turunen  »View Author Affiliations

JOSA A, Vol. 5, Issue 5, pp. 713-720 (1988)

View Full Text Article

Enhanced HTML    Acrobat PDF (1012 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Imaging of Gaussian Schell-model sources by general lossless systems is analyzed with an extended ray-transfermatrix method. Algebraic expressions are derived for the location, size, and coherence area of the image waist and for the depth of focus and the far-field diffraction angle. These results are shown to provide a continuous transformation between laser-beam optics and geometrical optics. They also lead naturally to several equivalence and invariance relations pertaining to isotropic and anisotropic Gaussian Schell-model sources. As an application, the importance of effects due to partial spatial coherence in beam focusing is examined.

© 1988 Optical Society of America

Original Manuscript: September 23, 1987
Manuscript Accepted: December 8, 1987
Published: May 1, 1988

Ari T. Friberg and Jari Turunen, "Imaging of Gaussian Schell-model sources," J. Opt. Soc. Am. A 5, 713-720 (1988)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. C. Schell, “A technique for the determination of the radiation pattern of a partially coherent aperture,” IEEE Trans. Antennas Propag. AP-15, 187–188 (1967). [CrossRef]
  2. L. Mandel, E. Wolf, “Spectral coherence and the concept of cross-spectral purity,” J. Opt. Soc. Am. 66, 529–535 (1976). [CrossRef]
  3. H. P. Baltes, J. Geist, A. Walther, “Radiometry and coherence,” in Inverse Source Problems in Optics, H. P. Baltes, ed. (Springer-Verlag, Berlin, 1978), pp. 119–154. [CrossRef]
  4. W. H. Carter, “Statistical radiometry,” Radio Sci. 18, 149–158 (1983). [CrossRef]
  5. E. Collett, E. Wolf, “Beams generated by Gaussian quasihomogeneous sources,” Opt. Commun. 32, 27–31 (1980). [CrossRef]
  6. J. T. Foley, M. S. Zubairy, “The directionality of Gaussian Schell-model beams,” Opt. Commun. 26, 297–300 (1978). [CrossRef]
  7. E. Wolf, E. Collett, “Partially coherent sources which produce the same far-field intensity distribution as a laser,” Opt. Commun. 25, 293–296 (1978). [CrossRef]
  8. B. E. A. Saleh, “Intensity distribution due to a partially coherent field and the Collett–Wolf theorem in the Fresnel zone,” Opt. Commun. 30, 135–138 (1979). [CrossRef]
  9. F. Gori, “Collett–Wolf sources and multimode lasers,” Opt. Commun. 34, 301–305 (1980). [CrossRef]
  10. A. Starikov, E. Wolf, “Coherent-mode representation of Gaussian Schell-model sources and of their radiation fields,” J. Opt. Soc. Am. 72, 923–928 (1982). [CrossRef]
  11. A. T. Friberg, R. J. Sudol, “Propagation parameters of Gaussian Schell-model beams,” Opt. Commun. 41, 383–387 (1982). [CrossRef]
  12. A. T. Friberg, R. J. Sudol, “The spatial coherence properties of Gaussian Schell-model beams,” Opt. Acta 30, 1075–1097 (1983). [CrossRef]
  13. R. Simon, E. C. G. Sudarshan, N. Mukunda, “Generalized rays in first-order optics: transformation properties of Gaussian Schell-model fields,” Phys. Rev. A 29, 3273–3279 (1984). [CrossRef]
  14. C. Pask, “Application of Wolf’s theory of coherence,” J. Opt. Soc. Am. A 3, 1097–1101 (1986). [CrossRef]
  15. P. DeSantis, F. Gori, G. Guattari, C. Palma, “An example of a Collett–Wolf source,” Opt. Commun. 29, 256–260 (1979). [CrossRef]
  16. J. D. Farina, L. M. Narducci, E. Collett, “Generation of highly directional beams from a globally incoherent source,” Opt. Commun. 32, 203–207 (1980). [CrossRef]
  17. J. Deschamps, D. Courjon, J. Bulabois, “Gaussian Schellmodel sources: an example and some perspectives,” J. Opt. Soc. Am. 73, 256–261 (1983). [CrossRef]
  18. A. T. Friberg, J. Turunen, “Algebraic and graphical propagation methods for Gaussian Schell-model beams,” Opt. Eng. 25, 857–864 (1986). [CrossRef]
  19. H. Kogelnik, “Imaging of optical modes—resonators with internal lenses,” Bell Syst. Tech. J. 44, 455–494 (1965).
  20. S. A. Collins, “Lens-system diffraction integral written in terms of matrix optics,” J. Opt. Soc. Am. 60, 1168–1177 (1970). [CrossRef]
  21. Y. Li, E. Wolf, “Radiation from anisotropic Gaussian Schellmodel sources,” Opt. Lett. 7, 256–258 (1982). [CrossRef] [PubMed]
  22. R. Simon, “A new class of anisotropic Gaussian beams,” Opt. Commun. 55, 381–385 (1985). [CrossRef]
  23. Y. Li, E. Wolf, “Focal shifts in diffracted converging spherical waves,” Opt. Commun. 39, 211–215 (1981). [CrossRef]
  24. E. Wolf, “Coherence and radiometry,” J. Opt. Soc. Am. 68, 6–17 (1978). [CrossRef]
  25. J. Turunen, A. T. Friberg, “Matrix representation of Gaussian Schell-model beams in optical systems,” Opt. Laser Technol. 18, 259–267 (1986). [CrossRef]
  26. H. Kogelnik, “On the propagation of Gaussian beams of light through lenslike media including those with a loss or gain variation,” Appl. Opt. 4, 1562–1569 (1965). [CrossRef]
  27. J. Turunen, A. T. Friberg, “Propagation of Gaussian Schellmodel beams: a matrix method,” in Optical System Design, Analysis, and Production for Advanced Technology Systems, R. E. Fischer, P. J. Rogers, eds. Proc. Soc. Photo-Opt. Instrum. Eng.655, 60–66 (1986). [CrossRef]
  28. P. DeSantis, F. Gori, G. Guattari, C. Palma, “Anisotropic Gaussian Schell-model sources,” Opt. Acta 33, 315–326 (1986). [CrossRef]
  29. A. Gerrard, J. M. Burch, Introduction to Matrix Methods in Optics (Wiley, London, 1975).
  30. E. Wolf, “New theory of partial coherence in the space-frequency domain. Part II: Steady-state fields and higher-order correlations,” J. Opt. Soc. Am. A 3, 76–85 (1986). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited