OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 5, Iss. 5 — May. 1, 1988
  • pp: 721–729

Signal transfer function of the Knox–Thompson speckle imaging technique

Oskar von der Lühe  »View Author Affiliations

JOSA A, Vol. 5, Issue 5, pp. 721-729 (1988)

View Full Text Article

Enhanced HTML    Acrobat PDF (979 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The transfer function associated with the Knox–Thompson speckle imaging technique is investigated. Numerical model transfer functions using log-normal statistics for perturbations of the complex wave front, the near-field approximation, and a Kolmogorov spectrum for atmospheric turbulence statistics are presented. Simple approximations for the transfer function are discussed. As with the transfer function of Labeyrie’s speckle interferometry technique, the portion beyond the seeing limit can be represented as the transfer function of an unaberrated telescope times a seeing-dependent constant. An additional factor depends on the frequency shift of the Knox – Thompson cross spectra. The influence of the frequency shift on the reconstructed phase error is discussed for simple reconstruction problems.

© 1988 Optical Society of America

Original Manuscript: May 6, 1987
Manuscript Accepted: January 13, 1988
Published: May 1, 1988

Oskar von der Lühe, "Signal transfer function of the Knox–Thompson speckle imaging technique," J. Opt. Soc. Am. A 5, 721-729 (1988)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. T. Knox, B. J. Thompson, “Recovery of images from atmospherically degraded short exposure photographs,” As-trophys. J. 193, L45–L48 (1974). [CrossRef]
  2. A. Labeyrie, “Attainment of diffraction-limited resolution in large telescopes by Fourier-analyzing speckle patterns in star images,” Astron. Astrophys. 6, 85–87 (1970).
  3. G. Weigelt, B. Wirnitzer, “Image reconstruction by the speckle-masking method,” Opt. Lett. 8, 389–391 (1983). [CrossRef] [PubMed]
  4. P. Nisenson, R. V. Stachnik, M. Karovska, R. W. Noyes, “A new optical source associated with T Tauri,” Astrophys. J. 297, L17–L20 (1985). [CrossRef]
  5. R. V. Stachnik, P. Nisenson, R. W. Noyes, “Speckle image reconstruction of solar features,” Astrophys. J. 271, L37–L40 (1983). [CrossRef]
  6. D. L. Fried, “Angular dependence of the atmospheric turbulence effect in speckle interferometry,” Opt. Acta 26, 597–613 (1979). [CrossRef]
  7. O. von der Lühe, “High resolution speckle imaging of solar small scale structure: the influence of anisoplanatism,” in High Resolution in Solar Physics, Vol. 233 of Lecture Notes in Physics, R. Muller, ed. (Springer-Verlag, Berlin, 1985), pp. 96–102. [CrossRef]
  8. C. Leinert, M. Haas, “Infrared speckle interferometry on Calar Alto,” in High Resolution Interferometric Imaging from the Ground, Proceedings of the Joint European Southern Observatory–National Optical Astronomy Observatories Conference (National Optical Astronomy Observatories, Tucson, Ariz., 1987), pp. 233–236.
  9. D. Korff, “Analysis of a method for obtaining near-diffraction-limited information in the presence of atmospheric turbulence,” J. Opt. Soc. Am. 63, 971–980 (1973). [CrossRef]
  10. D. L. Fried, “Optical resolution through a randomly inhomogeneous medium for very short and very long exposures,” J. Opt. Soc. Am. 56, 1372–1379 (1966). [CrossRef]
  11. F. Roddier, “The effects of atmospheric turbulence in optical astronomy,” in Progress in OpticsE. Wolf, ed. (Elsevier, New York, 1981), Vol. XIX. [CrossRef]
  12. V. I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation, (Israel Program for Scientific Translations, Jerusalem, 1971).
  13. R. Barakat, P. Nisenson, “Influence of the wave-front correlation function and deterministic wave-front aberrations on the speckle image reconstruction problem,” J. Opt. Soc. Am. 71, 1390–1402 (1981).
  14. J. B. Breckinridge, “Measurement of the amplitude of phase excursions in the earth’s atmosphere,” J. Opt. Soc. Am. 66, 143–144 (1976). [CrossRef]
  15. C. Roddier, “Measurements of the atmospheric attenuation of the spectral components of astonomical images,” J. Opt. Soc. Am. 66, 478–482 (1976). [CrossRef]
  16. M. Bertolotti, M. Carnevale, A. Consortini, L. Ronchi, “Optical propagation: problems and trends,” Opt. Acta 26, 507–529 (1979). [CrossRef]
  17. D. P. Karo, A. M. Schneidermann, “Transfer functions, correlation scales, and phase retrieval in speckle interferometry,” J. Opt. Soc. Am. 67, 1583–1587 (1977). [CrossRef]
  18. R. Deron, J. C. Fontanella, “Restauration d’images dégradées par la turbulence atmosphérique selon la méthode de Knox et Thompson,” J. Opt. (Paris) 15, 15–23 (1984). [CrossRef]
  19. O. von der Lühe, R. B. Dunn, “Solar granulation power spectra from speckle interferometry,” Astron. Astrophys. 177, 265–276 (1987).
  20. J. D. Freeman, J. C. Christou, F. Roddier, D. W. McCarthy, M. C. Cobb, “Application of triple correlation to one-dimensional infrared speckle data,” in High Resolution Interferometric Imaging from the Ground, Proceedings of the Joint European Southern Observatory–National Optical Astronomy Observatories Conference (National Optical Astronomy Observatories, Tucson, Ariz., 1987), pp. 47–50.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited