OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 5, Iss. 5 — May. 1, 1988
  • pp: 730–734

Quantum derivation of K-distributed noise for finite 〈N

Edward B. Rockower  »View Author Affiliations


JOSA A, Vol. 5, Issue 5, pp. 730-734 (1988)
http://dx.doi.org/10.1364/JOSAA.5.000730


View Full Text Article

Enhanced HTML    Acrobat PDF (541 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Semiclassical derivations of the fluctuations of light beams have relied on limiting procedures in which the average number, 〈N〉, of scattering elements, photons, or superposed wave packets approaches infinity. We show that the fluctuations of thermal light having a Bose–Einstein photon distribution and of light with an amplitude distribution based on the modified Bessel functions, Kα−1, which has been found useful in describing light scattered from or through turbulent media, may be derived with a quantum-mechanical analysis as the superposition of a random number, N, of single-photon eigenstates with finite 〈N〉. The analysis also provides the P representation for K-distributed noise. Generalizations of K noise are proposed. The factor-of-2 increase in the photon-number second factorial moment related to photon clumping in the Hanbury Brown–Twiss effect for thermal (Gaussian) fields is shown to arise generally in these random superposition models, even for non-Gaussian fields.

© 1988 Optical Society of America

History
Original Manuscript: June 29, 1987
Manuscript Accepted: December 30, 1987
Published: May 1, 1988

Citation
Edward B. Rockower, "Quantum derivation of K-distributed noise for finite 〈N〉," J. Opt. Soc. Am. A 5, 730-734 (1988)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-5-5-730

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited