OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 5, Iss. 8 — Aug. 1, 1988
  • pp: 1201–1206

Retrieval of wave aberration of human eyes from actual point-spread-function data

Pablo Artal, Javier Santamaría, and Julian Bescós  »View Author Affiliations

JOSA A, Vol. 5, Issue 8, pp. 1201-1206 (1988)

View Full Text Article

Enhanced HTML    Acrobat PDF (645 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The wave aberration of human eyes is retrieved from actual point-spread-function (PSF) data and the modulus of the pupil function. The PSF had been obtained previously by application of a hybrid optical–digital method developed recently. The retrieval is done by using a bidimensional Gerchberg–Saxton phase-retrieval algorithm joined to an iterative phase-unwrapping algorithm. To obtain an adequate convergence, the initial wave aberration for starting the retrieval–unwrapping algorithm is estimated with a nonlinear least-squares algorithm. The resulting wave aberrations for several subjects show irregular aberrations superimposed upon the regular wave-aberration components, with astigmatism being the most important asymmetric aberration.

© 1988 Optical Society of America

Original Manuscript: August 31, 1987
Manuscript Accepted: April 21, 1988
Published: August 1, 1988

Pablo Artal, Javier Santamaría, and Julian Bescós, "Retrieval of wave aberration of human eyes from actual point-spread-function data," J. Opt. Soc. Am. A 5, 1201-1206 (1988)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Santamaría, P. Artal, J. Bescos, “Determination of the point-spread function of human eyes using a hybrid optical–digital method,” J. Opt. Soc. Am. A 4, 1109–1114 (1987). [CrossRef]
  2. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1970).
  3. H. H. Hopkins, Wave Theory of Aberrations (Oxford U. Press, London, 1950).
  4. M. S. Smirnov, “Measurement of the wave aberration of the human eye,” Biophysics 6, 776–794 (1961).
  5. H. C. Howland, B. Howland, “A subjective method for the measurement of monochromatic aberrations of the eye,”J. Opt. Soc. Am. 67, 1508–1518 (1977). [CrossRef] [PubMed]
  6. F. Berny, S. Slansky, “Wavefront determination resulting from Foucault test as applied to the human eye and visual instruments,” in Optical Instruments and Techniques, J. Home Dickson, ed. (Oriel, London, 1969), pp. 375–385.
  7. G. Walsh, W. N. Charman, H. C. Howland, “Objective technique for the determination of monochromatic aberrations of the human eye,” J. Opt. Soc. Am. A 1, 987–992 (1984). [CrossRef] [PubMed]
  8. R. A. Gonsalves, “Phase retrieval from modulus data,”J. Opt. Soc. Am. 66, 961–964 (1976). [CrossRef]
  9. R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).
  10. S. L. S. Jacoby, Iterative Methods for Non-Linear Optimization Problems (Prentice-Hall, Englewood Cliffs, N.J., 1972).
  11. J. Maeda, K. Murata, “Retrieval of wave aberration from point spread function or optical transfer function data,” Appl. Opt. 20, 274–279 (1981). [CrossRef] [PubMed]
  12. W. H. Southwell, “Wave-front analyzer using a maximum likelihood algorithm,”J. Opt. Soc. Am. 67, 396–399 (1977). [CrossRef]
  13. D. A. Nahrstedt, W. H. Southwell, “Maximum likelihood phase-retrieval algorithm: applications,” Appl. Opt. 23, 4328–4331 (1984). [CrossRef] [PubMed]
  14. R. Barakat, G. Newsam, “Numerically stable iterative method for the inversion of wave-front aberrations from measured point-spread-function data,”J. Opt. Soc. Am. 70, 1255–1263 (1980). [CrossRef]
  15. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).
  16. R. Navarro, J. Santamaría, J. Bescós, “Accommodation-dependent model of the human eye with aspherics,” J. Opt. Soc. Am. A 2, 1273–1281 (1985). [CrossRef] [PubMed]
  17. D. C. Ghiglia, G. A. Mastin, L. A. Romero, “Cellular-automata method for phase unwrapping,” J. Opt. Soc. Am. A 4, 267–280 (1987). [CrossRef]
  18. J. M. Tribolet, “A new phase unwrapping algorithm,”IEEE Trans. Acoust. Speech Signal Process. ASSP-25, 170–177 (1977). [CrossRef]
  19. A. V. Oppenheim, R. W. Schafer, Digital Signal Processing (Prentice-Hall, Englewood Cliffs, N.J., 1975).
  20. S. N. Bezdid’ko, “The use of Zernike polynomials in optics,” Sov. J. Opt. Technol. 41, 425–429 (1974).
  21. M. Nieto-Vesperinas, “A study of the performance of nonlinear least-square optimization methods in problems of phase retrieval,” Opt. Acta 33, 713–722 (1986). [CrossRef]
  22. R. W. Gerchberg, “The lock problem in the Gerschberg–Saxton algorithm for phase retrieval,” Optik 74, 91–93 (1986).
  23. J. R. Fienup, “Reconstruction of an object from the modulus of its Fourier transform,” Opt. Lett. 3, 27–29 (1978). [CrossRef] [PubMed]
  24. J. R. Fienup, “Reconstruction of a complex-valued object from the modulus of its Fourier transform using a support constraint,” J. Opt. Soc. Am. A 4, 118–123 (1987). [CrossRef]
  25. A. Van Meeteren, “Calculations on the optical modulation transfer function of the human eye for white light,” Opt. Acta 21, 395–412 (1972). [CrossRef]
  26. J. A. M. Jennings, W. N. Charman, “Off-axis quality in the human eye,” Vision Res. 21, 445–455 (1981). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited