OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 5, Iss. 8 — Aug. 1, 1988
  • pp: 1226–1232

Symmetry-adapted classification of aberrations

Kurt Bernardo Wolf  »View Author Affiliations


JOSA A, Vol. 5, Issue 8, pp. 1226-1232 (1988)
http://dx.doi.org/10.1364/JOSAA.5.001226


View Full Text Article

Enhanced HTML    Acrobat PDF (828 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical systems produce canonical transformations on phase space that are nonlinear. When a power expansion of the coordinates is performed around a chosen optical axis, the linear part is the paraxial approximation, and the nonlinear part is the ideal of aberrations. When the optical system has axial symmetry, its linear part is the symplectic group Sp(2, R) represented by 2 × 2 matrices. It is used to provide a classification of aberrations into multiplets of spin that are irreducible under the group, in complete analogy with the quantum harmonic-oscillator states. The “magnetic” axis of the latter may be chosen to adapt to magnifying systems or to optical fiberlike media. There seems to be a significant computational advantage in using the symplectic classification of aberrations.

© 1988 Optical Society of America

History
Original Manuscript: September 12, 1986
Manuscript Accepted: February 22, 1988
Published: August 1, 1988

Citation
Kurt Bernardo Wolf, "Symmetry-adapted classification of aberrations," J. Opt. Soc. Am. A 5, 1226-1232 (1988)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-5-8-1226


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Sánchez-Mondragón, K. B. Wolf, eds., Proceedings of the CIFMO-CIO Workshop on Lie Methods in Optics, Vol. 250 of Lecture Notes in Physics (Springer-Verlag, Heidelberg, 1986). [CrossRef]
  2. A. J. Dragt, “Lie algebraic theory of geometrical optics and optical aberrations,”J. Opt. Soc. Am. 72, 372–379 (1982). [CrossRef]
  3. V. Guillemin, S. Sternberg, Symplectic Techniques in Physics (Cambridge U. Press, Cambridge, 1984).
  4. A. J. Dragt, E. Forest, K. B. Wolf, in Proceedings of the CIFMO-CIO Workshop on Lie Methods in Optics, J. Sánchez-Mondragón, K. B. Wolf, eds., Vol. 250 of Lecture Notes in Physics (Springer-Verlag, Heidelberg, 1986), pp. 105–157. [CrossRef]
  5. T. Sekiguchi, K. B. Wolf, “The Hamiltonian formulation of optics,” Am. J. Phys. 55, 830–835 (1987). [CrossRef]
  6. H. Goldstein, Classical Mechanics (Addison-Wesley, Reading, Mass., 1959).
  7. J. R. Klauder, E. C. G. Sudarshan, Fundamentals of Quantum Optics (Benjamin, New York, 1968).
  8. A. J. Dragt, “Lectures on Nonlinear Orbit Dynamics,”AIP Conf. Proc. 87 (1982). [CrossRef]
  9. A. J. Dragt, J. Finn, “Lie series and invariant functions for analytic symplectic maps,”J. Math. Phys. 17, 2215–2227 (1976); see also A. J. Dragt, E. Forest, “Computation of nonlinear behavior of Hamiltonian systems using Lie algebraic methods,”J. Math. Phys. 24, 2734–2744 (1983). [CrossRef]
  10. K. B. Wolf, “Symmetry in Lie optics,” Ann. Phys. 172, 1–25 (1986). [CrossRef]
  11. K. B. Wolf, “On time-dependent quadratic quantum Hamiltonians,” SIAM J. Appl. Math. 40, 419–431 (1981). [CrossRef]
  12. S. Steinberg, in Proceedings of the CIFMO-CIO Workshop on Lie Methods in Optics, J. Sánchez-Mondragón, K. B. Wolf, eds., Vol. 250 of Lecture Notes in Physics (Springer-Verlag, Heidelberg, 1986), pp. 45–103. [CrossRef]
  13. M. Navarro-Saad, K. B. Wolf, “Factorization of the phase-space transformation produced by an arbitrary refracting surface,” J. Opt. Soc. Am. A 3, 340–346 (1986). [CrossRef]
  14. See Ref. 1. Add. A.
  15. H. Buchdahl, An Introduction to Hamiltonian Optics (Cambridge U. Press, Cambridge, 1970).
  16. This aberration coefficient appears as p6, the missing coefficient, in Ref. 11, Sec. 121, and is treated in Sec. 125 with some incidental remarks on duality (i.e., Fourier conjugation).
  17. M. Navarro-Saad, K. B. Wolf, “The group-theoretical treatment of aberrating systems. I. Aligned lens systems in third aberration order,”J. Math. Phys. 27, 1449–1457 (1986). [CrossRef]
  18. L. C. Biedenharn, J. D. Louck, Angular Momentum in Quantum Physics, Vol. 8 of Encyclopedia of Mathematics, G.-C. Rota, ed. (Addison-Wesley, Reading, Mass., 1981), Sec. 6.16.
  19. K. B. Wolf, “The group-theoretical treatment of aberrating systems. II. Axis-symmetric inhomogeneous systems and fiber optics in third aberration order,”J. Math. Phys. 27, 1458–1465 (1986). [CrossRef]
  20. V. Bargmann, “On a Hubert space of analytic functions and an associated integral transform,” Commun. Pure Appl. Math. 14, 187–214 (1961). [CrossRef]
  21. K. B. Wolf, Integral Transforms in Science and Engineering (Plenum, New York, 1979), Chap. 9.
  22. M. Navarro-Saad, K. B. Wolf, “Applications of a factorization theorem for ninth-order aberration optics,”J. Symbolic Comp. 1, 235–239 (1985). [CrossRef]
  23. A. J. Dragt, “Elementary and advanced Lie algebraic methods with applications to accelerator design, electron microscopes and light optics,” Nucl. Instrum. Meth. Phys. Res. A 258, 339–354 (1987). [CrossRef]
  24. K. B. Wolf, “The group-theoretical treatment of aberrating systems. III. The classification of asymmetric aberrations,”J. Math. Phys. 28, 2498–2507 (1987). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited