OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 5, Iss. 8 — Aug. 1, 1988
  • pp: 1244–1247

Level-crossing statistics of aperture-integrated isotropic speckle

Richard Barakat  »View Author Affiliations


JOSA A, Vol. 5, Issue 8, pp. 1244-1247 (1988)
http://dx.doi.org/10.1364/JOSAA.5.001244


View Full Text Article

Enhanced HTML    Acrobat PDF (397 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Level-crossing statistics of aperture-integrated laser speckle are studied. In particular, expressions are obtained for the level-crossing rate and for the above-level dwell distance.

© 1988 Optical Society of America

History
Original Manuscript: March 17, 1988
Manuscript Accepted: March 23, 1988
Published: August 1, 1988

Citation
Richard Barakat, "Level-crossing statistics of aperture-integrated isotropic speckle," J. Opt. Soc. Am. A 5, 1244-1247 (1988)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-5-8-1244


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Ebeling, “Statistical properties of spatial derivatives of the amplitude and intensity of monochromatic speckle patterns,” Opt. Acta 26, 1505–1521 (1979). [CrossRef]
  2. R. Barakat, “The level-crossing rate and above-level duration time of the intensity of a Gaussian random process,” Inf. Sci. (NY) 20, 83–87 (1980). [CrossRef]
  3. R. D. Bahuguna, K. K. Gupta, K. Singh, “Expected number of intensity level crossing in a normal speckle pattern,”J. Opt. Soc. Am. 70, 874–876 (1980). [CrossRef]
  4. K. Ebeling, “Experimental investigation of some statistical properties of monochromatic speckle patterns,” Opt. Acta 26, 1345–1349 (1979). [CrossRef]
  5. N. Takai, T. Iwai, T. Asakura, “Real-time velocity measurement for a diffuse object using zero-crossing of laser speckle,”J. Opt. Soc. Am. 70, 450–455 (1980). [CrossRef]
  6. N. Takai, T. Iwai, T. Asakura, “Laser speckle velocimeters using a zero-crossing technique for spatially integrated intensity fluctuation,” Opt. Eng. 20, 320–324 (1981). [CrossRef]
  7. N. Takai, T. Asakura, “Displacement measurement of speckles using a 2-D level-crossing technique,” Appl. Opt. 22, 3514–3519 (1983). [CrossRef] [PubMed]
  8. N. Takai, T. Iwai, T. Ushizaka, T. Asakura, “Zero-crossing study on dynamic properties of speckles,”J. Opt. (Paris) 11, 93–101 (1980). [CrossRef]
  9. J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, New York, 1975). [CrossRef]
  10. J. Bendat, Principles and Applications of Random Noise Theory (Wiley, New York, 1958), Chap. 10.
  11. R. Barakat, “Second-order statistics of integrated intensities and of detected photoelectrons,” J. Mod. Opt. 34, 91–102 (1987). [CrossRef]
  12. G. Szegö, Orthogonal Polynomials (American Mathematical Society, Providence, R.I., 1939).
  13. R. A. Silverman, “The fluctuation rate of the chi process,” Trans. IRE IT-4, 30–34 (1958).
  14. I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series, and Products (Academic, New York, 1980).
  15. K. Ebeling, “K-distributed spatial intensity derivatives in monochromatic speckle patterns,” Opt. Commun. 35, 323–326 (1980). [CrossRef]
  16. I. F. Blake, W. C. Lindsey, “Level-crossing problems for random processes,”IEEE Trans. Inf. Theory IT-19, 295–315 (1973). [CrossRef]
  17. J. Abrahams, “A survey of recent progress on level-crossing problems for random processes,” in Communications and Networks, A Survey of Recent Advances, I. F. Blake, H. V. Poor, eds. (Springer-Verlag, New York, 1986).
  18. C. Helstrom, Statistical Theory of Signal Detection (Pergamon, New York, 1968), pp. 305–306.
  19. A. R. Pratt, “Some theoretical considerations concerning time statistics in signal detection,” in Signal Processing, J. Griffiths, P. Stocklin, C. van Schooneveld, eds. (Academic, New York, 1973).
  20. M. Abramowitz, I. Stegun, Handbook of Mathematical Functions (U.S. Government Printing Office, Washington, D.C., 1968).
  21. H. Gray, R. Thompson, G. McWilliams, “A new approximation for the chi-square integral,” Math. Computat. 23, 85–89 (1969). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited