OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 5, Iss. 8 — Aug. 1, 1988
  • pp: 1287–1296

Holograms in motion. I. Effect of fluid motion on volume holograms

Juan C. Agüí and L. Hesselink  »View Author Affiliations


JOSA A, Vol. 5, Issue 8, pp. 1287-1296 (1988)
http://dx.doi.org/10.1364/JOSAA.5.001287


View Full Text Article

Enhanced HTML    Acrobat PDF (1223 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The effect of flow motion on a volume hologram written in a fluid medium is studied. The hologram is written in a sensitized fluid by either thermal absorption or the photochromic effect or by other mechanisms. After being written, the hologram is deformed because of the motion of the supporting fluid. The effect of several representative fluid motions on the hologram deformation, i.e., a plane shear flow and a symmetric plane jet, is found by solving the associated convection-diffusion equation. The effect of diffusion on the fading of the hologram is also studied for several diffusion rates corresponding to different hologram-writing mechanisms. The result of the calculation is the determination of the new shape and intensity of the hologram as functions of time. The analysis is carried out entirely in the Fourier domain, where the convection–diffusion equation is solved more easily. The output is therefore given in terms of spatial Fourier components that represent the deformed and convected hologram. The use of volume holograms for the determination of velocity gradients corresponding to small-scale fluid motion is discussed. In this paper we describe the deformation process that the hologram undertakes under the effect of fluid motion. In part II of this series [ J. Opt. Soc. Am. A 5, 1297 ( 1988)] we describe a method for predicting the diffracting characteristics of strained holograms. That method directly incorporates the results presented here.

© 1988 Optical Society of America

History
Original Manuscript: October 6, 1987
Manuscript Accepted: April 7, 1988
Published: August 1, 1988

Citation
Juan C. Agüí and L. Hesselink, "Holograms in motion. I. Effect of fluid motion on volume holograms," J. Opt. Soc. Am. A 5, 1287-1296 (1988)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-5-8-1287

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited