OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 7, Iss. 5 — May. 1, 1990
  • pp: 838–847

Simulation of point-source scintillation through three-dimensional random media

J. M. Martin and Stanley M. Flatté  »View Author Affiliations

JOSA A, Vol. 7, Issue 5, pp. 838-847 (1990)

View Full Text Article

Enhanced HTML    Acrobat PDF (1196 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have calculated intensity spectra and variances for waves emanating from a point source and propagating through extended three-dimensional random media by simulation. Spectra of the medium fluctuations considered were power-law, power-law with inner scale, and Gaussian spectra. The simulations covered the regimes of weak fluctuations and strong focusing, including the peak of the intensity variance and beyond. The intensity variances are substantially larger than both the corresponding results for plane-wave incidence and the theoretical calculations for point sources by other authors. Our simulation results agree reasonably closely with the results of laserpropagation experiments over kilometer-length paths in the atmosphere.

© 1990 Optical Society of America

Original Manuscript: September 11, 1989
Manuscript Accepted: January 17, 1990
Published: May 1, 1990

J. M. Martin and Stanley M. Flatté, "Simulation of point-source scintillation through three-dimensional random media," J. Opt. Soc. Am. A 7, 838-847 (1990)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. D. Tappert, “The parabolic approximation method,” in Wave Propagation and Underwater Acoustics, J. B. Keller, J. S. Papadakis, eds. (Springer-Verlag, Berlin, 1977), pp. 224–287. [CrossRef]
  2. S. M. Flatté, F. D. Tappert, “Calculation of the effect of internal waves on oceanic sound transmission,” J. Acoust. Soc. Am. 58, 1151–1159 (1975). [CrossRef]
  3. D. J. Thomson, N. R. Chapman, “A wide-angle split-step algorithm for the parabolic equation,” J. Acoust. Soc. Am. 74, 1848–1854 (1983). [CrossRef]
  4. J. M. Martin, S. Flatté, “Intensity images and statistics from numerical simulation of plane wave propagation in 3-D random media,” Appl. Opt. 27, 2111–2126 (1988). [CrossRef] [PubMed]
  5. A. M. Whitman, M. J. Beran, “Two-scale solution for atmospheric scintillation from a point source,” J. Opt. Soc. Am A 5, 735–737 (1988). [CrossRef]
  6. W. R. Coles, R. G. Frehlich, “Simultaneous measurements of angular scattering and intensity scintillation in the atmosphere,” J. Opt. Soc. Am. 72, 1042–1048 (1982). [CrossRef]
  7. J. A. Fleck, J. R. Morris, M. D. Feit, “Time-dependent propagation of high energy laser beams through the atmosphere,” Appl. Phys. 10, 129–160 (1976). [CrossRef]
  8. D. L. Knepp, “Multiple phase-screen calculation of the temporal behavior of stochastic waves,” Proc. IEEE 71, 722–737 (1983). [CrossRef]
  9. V. I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation, TT-68-50464 (National Technical Information Service, Springfield, Va., 1971).
  10. R. Dashen, “Path integrals for waves in random media,” J. Math. Phys. 20, 894–920 (1979). [CrossRef]
  11. S. M. Flatté, R. Dashen, W. H. Munk, K. M. Watson, F. Zachariasen, Sound Transmission through a Fluctuating Ocean (Cambridge U. Press, Cambridge, 1979).
  12. A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1989).
  13. R. L. Fante, “Inner-scale size effect on the scintillations of light in the turbulent atmosphere,” J. Opt. Soc. Am. 73, 277–281 (1983). [CrossRef]
  14. R. J. Hill, S. F. Clifford, “Theory of saturation of optical scintillation by strong turbulence for arbitrary refractive-index spectra,” J. Opt. Soc. Am. 71, 675–686 (1981). [CrossRef]
  15. R. J. Hill, “Theory of saturation of optical scintillation by strong turbulence: plane-wave variance and covariance and spherical wave covariance,” J. Opt. Soc. Am. 72, 212–222 (1982). [CrossRef]
  16. R. G. Frehlich, “Intensity covariance of a point source in a random medium with a Kolmogorov spectrum and an inner scale of turbulence,” J. Opt. Soc. Am. A 4, 360–366 (1987). [CrossRef]
  17. R. J. Hill, “Spectra of fluctuations in refractivity, temperature, humidity, and the temperature-humidity cospectrum in the inertial and dissipation ranges,” Radio Sci. 13, 953–961 (1978). [CrossRef]
  18. B. J. Uscinski, “Analytical solution of the fourth-moment equation and interpretation as a set of phase screens,” J. Opt. Soc. Am. A 2, 2077–2091 (1985). [CrossRef]
  19. V. R. Rumsey, “Scintillations due to a concentrated layer with a power-law turbulence spectrum,” Radio Sci. 10, 107–114 (1975). [CrossRef]
  20. D. P. Hinson, “Strong scintillations during atmospheric occultations: theoretical intensity spectra,” Radio Sci. 21, 257–270 (1986). [CrossRef]
  21. R. Frehlich, Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309 (personal communication).
  22. K. S. Goshelashvily, V. I. Shishov, “Saturation of laser irradiance fluctuations beyond a turbulent layer,” Opt. Quantum Electron. 7, 524–536 (1975). [CrossRef]
  23. J. M. Martin, Voyager Microwave Scintillation Measurements of Solar Wind Plasma Parameters, Ph.D. dissertation (Stanford University, Stanford, Calif., 1985).
  24. G. Parry, P. N. Pusey, “K distributions in atmospheric propagation of laser light,” J. Opt. Soc. Am. 69, 796–798 (1979). [CrossRef]
  25. R. L. Phillips, L. C. Andrews, “Measured statistics of laser-light scattering in atmospheric turbulence,” J. Opt. Soc. Am. 71, 1440–1445 (1981). [CrossRef]
  26. R. G. Frehlich, Laser Propagation in Random Media, Ph.D. dissertation (University of California, San Diego, San Diego, Calif., 1982).
  27. A. M. Whitman, M. J. Beran, “Two-scale solution for atmospheric scintillation,” J. Opt. Soc. Am. A 2, 2133–2143 (1985). [CrossRef]
  28. R. G. Frehlich, S. M. Wandzura, R. J. Hill, “Log-amplitude covariance for waves propagating through very strong turbulence,” J. Opt. Soc. Am. A 4, 2158–2161 (1987). [CrossRef]
  29. J. L. Codona, D. B. Creamer, S. M. Flatté, R. G. Frehlich, F. S. Henyey, “Solution for the fourth moment of waves propagating in random media,” Radio Sci. 21, 929–948 (1986). [CrossRef]
  30. S. Frankenthal, A. M. Whitman, M. J. Beran, “Two-scale solutions for intensity fluctuations in strong scattering,” J. Opt. Soc. Am. A 1, 585–597 (1984). [CrossRef]
  31. C. Macaskill, “An improved solution to the fourth moment equation for intensity fluctuations,” Proc. R. Soc. London Ser. A 386, 461–474 (1983). [CrossRef]
  32. A. Furutsu, “Intensity correlation functions of lightwaves in a turbulent medium: an exact version of the two-scale method,” Appl. Opt. 27, 2127–2144 (1988). [CrossRef] [PubMed]
  33. M. J. Beran, A. M. Whitman, “Effect of the turbulence inner scale on scintillation in the atmosphere,” in Propagation Engineering, N. S. Kopeika, W. B. Miller, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1115, 2–10 (1989). [CrossRef]
  34. J. H. Churnside, R. J. Hill, “Probability density of irradiance scintillations for strong path-integrated refractive turbulence,” J. Opt. Soc. Am. A 4, 727–733 (1987). [CrossRef]
  35. R. G. Frehlich, “Estimation of the parameters of the atmospheric turbulence spectrum using measurements of the spatial intensity covariance,” J. Opt. Soc. Am. A 5, 1–50 (1988).
  36. R. J. Hill, J. H. Churnside, “Observational challenges of strong scintillations of irradiance,” J. Opt. Soc. Am. A 3, 445–447 (1988). [CrossRef]
  37. G. R. Ochs, R. J. Hill, “Optical-scintillation method of measuring turbulence inner scale,” Appl. Opt. 24, 2430–2432 (1985). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited