OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 7, Iss. 6 — Jun. 1, 1990
  • pp: 1015–1018

Information-content analysis of aureole inversion methods: differential kernel versus normal

Michael A. Box and Gabriel Viera  »View Author Affiliations


JOSA A, Vol. 7, Issue 6, pp. 1015-1018 (1990)
http://dx.doi.org/10.1364/JOSAA.7.001015


View Full Text Article

Enhanced HTML    Acrobat PDF (440 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

It has recently been suggested that more satisfactory inversion results for the aerosol size distribution may be obtained if the scattered (aureole) data are first differentiated with respect to angle—the so-called differential-kernel method. Analytic eigenfunction theory provides an ideal framework for determining the relative information content of this method versus the standard approach. Our results, supported by the inversion of synthetic data sets, show the differential-kernel method to have significant advantages.

© 1990 Optical Society of America

History
Original Manuscript: June 26, 1989
Manuscript Accepted: January 19, 1990
Published: June 1, 1990

Citation
Michael A. Box and Gabriel Viera, "Information-content analysis of aureole inversion methods: differential kernel versus normal," J. Opt. Soc. Am. A 7, 1015-1018 (1990)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-7-6-1015


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. E. S. Green, A. Deepak, B. J. Lipofsky, “Interpretation of the Sun’s aureole based on atmospheric aerosol models,” Appl. Opt. 10, 1263–1279 (1971). [CrossRef] [PubMed]
  2. J. T. Twitty, “The inversion of aureole measurements to derive aerosol size distributions,” J. Atmos. Sci. 32, 584–591 (1975). [CrossRef]
  3. A. Deepak, ed., Inversion Methods in Atmospheric Remote Sounding (Academic, New York, 1977).
  4. D. Deirmendjian, “A survey of light scattering techniques used in the remote monitoring of atmospheric aerosols,” Rev. Geophys. Space Phys. 18, 341–360 (1980). [CrossRef]
  5. M. D. King, D. M. Byrne, B. M. Herman, J. A. Reagan, “Aerosol size distributions obtained by inversion of spectral optical depth measurements,” J. Atmos. Sci. 35, 2153–2167 (1978). [CrossRef]
  6. E. Trakhovsky, E. P. Shettle, “Improved inversion procedure for the retrieval of aerosol size distributions using aureole measurements,” J. Opt. Soc. Am. A 2, 2054–2061 (1985). [CrossRef]
  7. M. T. Chahine, “Inversion problems in radiative transfer: determination of atmospheric parameters,” J. Atmos. Sci. 27, 960–967 (1970). [CrossRef]
  8. S. Twomey, Introduction to the Mathematics of Inversion in Remote Sensing and Indirect Measurements (American Elsevier, New York, 1977).
  9. N. Wolfson, J. H. Joseph, Y. Mekler, “Comparative study of inversion techniques. Part I: accuracy and stability,” J. Appl. Meteorol. 18, 543–555 (1979). [CrossRef]
  10. G. Viera, M. A. Box, “Information content analysis of aerosol remote sensing experiments using singular function theory. 1: Extinction measurements,” Appl. Opt. 26, 1312–1327 (1987). [CrossRef] [PubMed]
  11. G. Viera, M. A. Box, “Information content analysis of aerosol remote sensing experiments using singular function theory. 2: Scattering measurements,” Appl. Opt. 27, 3262–3274 (1988). [CrossRef] [PubMed]
  12. J. G. McWhirter, E. R. Pike, “On the numerical inversion of the Laplace transform and similar Fredholm integral equations of the first kind,” J. Phys. A 11, 1729–1745 (1978). [CrossRef]
  13. M. Bertero, E. R. Pike, “Particle size distributions from Fraunhofer diffraction. I. An analytic eigenfunction approach,” Opt. Acta 30, 1043–1049 (1983). [CrossRef]
  14. G. Viera, M. A. Box, “Information content analysis of aerosol remote sensing experiments using an analytic eigenfunction theory: anomalous diffraction approximation,” Appl. Opt. 24, 4525–4533 (1985). [CrossRef] [PubMed]
  15. F. Smithies, Integral Equations (Cambridge U. Press, London, 1958).
  16. G. Arfken, Mathematical Methods for Physicists (Academic, New York, 1970).
  17. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
  18. M. Kerker, The Scattering of Light, and Other Electromagnetic Radiation (Academic, New York, 1969).
  19. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  20. E. J. McCartney, Optics of the Atmosphere (Wiley, New York, 1976).
  21. H. M. Nussenzveig, W. J. Wiscombe, “Efficiency factors in Mie scattering,” Phys. Rev. Lett. 45, 1490–1494 (1980). [CrossRef]
  22. E. P. Shettle, U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Bedford, Massachusetts 01731 (personal communication).
  23. P. Attard, M. A. Box, G. Bryant, B. H. J. McKellar, “Asymptotic behavior of the Mie scattering amplitude,” J. Opt. Soc. Am. A 3, 256–258 (1986). [CrossRef]
  24. I. S. Gradshteyn, I. W. Ryzhik, Tables of Integrals, Series and Products (Academic, New York, 1965).
  25. M. Abramowitz, I. A. Stegun, eds., Handbook of Mathematical Functions (Dover, New York, 1965).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited