OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 7, Iss. 6 — Jun. 1, 1990
  • pp: 1074–1100

Sensing scaled scintillations

Bruce J. West  »View Author Affiliations


JOSA A, Vol. 7, Issue 6, pp. 1074-1100 (1990)
http://dx.doi.org/10.1364/JOSAA.7.001074


View Full Text Article

Enhanced HTML    Acrobat PDF (3482 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We review some of the ways in which the fractal concept has found application in wave-propagation contexts. The scaling properties of fractals in both geometrical and statistical situations are reviewed and the relation to inverse power laws discussed. The relationship among the self-similar scaling properties of fractals, Lévy distributions, and renormalized group theory is explored to provide a simple picture of wave propagation through multiscale media. Finally, the notion of using a wavelet transform in the processing of fractal time series is considered.

© 1990 Optical Society of America

History
Original Manuscript: August 8, 1989
Manuscript Accepted: January 9, 1990
Published: June 1, 1990

Citation
Bruce J. West, "Sensing scaled scintillations," J. Opt. Soc. Am. A 7, 1074-1100 (1990)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-7-6-1074


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ishimaru, Wave Propagation and Scattering Random Media (Academic, New York, 1978), Vols. 1 and 2.
  2. Principles and Applications of Underwater Sound, reprint, NDRC Vol. 7 (U.S. Department of the Navy, Washington, D.C., 1946).
  3. P. D. Edmonds, ed., Ultrasonics, Vol. 19 of Methods of Experimental Physics (Academic, New York, 1981).
  4. M. J. Albowitz, H. Segur, Solitons and the Inverse Scattering Transform (Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1981).
  5. “Colors of sea and sky,” in Scientific Papers by Lord Rayleigh, Vol. V, 1902–1910 (Dover, New York, 1964), pp. 540–546.
  6. See, e.g., R. G. Newton, Scattering Theory of Waves and Particles (McGraw-Hill, New York1966).
  7. R. K. Crane, “Ionospheric scintillation,” Proc. IEEE 65, 180–199 (1977). [CrossRef]
  8. S. M. Flatté, R. Dashen, W. H. Munk, K. M. Watson, F. Zachariasen, Sound Transmission through a Fluctuating Ocean (Cambridge U. Press, New York, 1979).
  9. A. Hewish, P. F. Scott, D. Wills, “Interplanetary scintillation of small diameter radio sources,” Nature (London) 203, 1214–1217 (1964). [CrossRef]
  10. R. Dashen, “Path integrals for waves in random media,” J. Math. Phys. 20, 894–920 (1979). [CrossRef]
  11. L. L. Foldy, “The multiple scattering of waves: I. General theory of isotropic scattering by randomly distributed scatterers,” Phys. Rev. 67, 107–119 (1945). [CrossRef]
  12. M. Lax, “Multiple scattering of waves: II. The effective field in dense systems,” Phys. Rev. 85, 621–629 (1952). [CrossRef]
  13. J. E. Gubernatis, E. Domany, “Effects of microstructure on the speed and attenuation of elastic waves in porous materials,” Wave Motion 6, 579–589 (1984). [CrossRef]
  14. B. J. West, M. F. Shlesinger, “The fractal interpretation of the weak scattering of elastic waves,” J. Stat. Phys. 36, 779–786 (1984). [CrossRef]
  15. R. S. Wu, “Heterogeneity spectrum, wave scattering response of a fractal random medium and the rupture processes in the medium,” J. Wave Mater. Int. 1, 79–96 (1986).
  16. B. B. Madelbrot, Fractals, Form and Chance (Freeman, San Francisco, Calif., 1977).
  17. H. J. Morris, L. Kadanoff, “Teaching the renormalization group,” Am. J. Phys. 46, 652–657 (1978). [CrossRef]
  18. K. G. Wilson, “Problems in physics with many scales of length,” Sci. Am. 241(2), 158–179 (1979). [CrossRef]
  19. M. Stiassne, Department of Applied Mathematics, California Institute of Technology, Pasadena, California 91125, “The fractal dimension of the ocean surface,” preprint (1986).
  20. P. Lévy, Theorie de l’Addition des Variables Aléatories (Gauthier-Vildars, Paris, 1937).
  21. E. W. Montroll, B. J. West, “On an enriched collection of stochastic processes,” in Fluctuation Phenomena, E. W. Montroll, J. L. Lebowitz, eds. (North-Holland, Amsterdam, 1976;Fluctuation Phenomena2nd ed., North-Holland, Amsterdam, 1987).
  22. A. N. KolmogorovC. R. Dokl. Acad. Sci. URSS 30, 301 (1941).
  23. M. Holschneider, “On the wavelet transformation of fractal objects,” J. Stat. Phys. 50, 963 (1988). [CrossRef]
  24. J. Feder, Fractals (Plenum, New York, 1988).
  25. B. B. Mandelbrot, “Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier,” J. Fluid Mech. 62, 331–358 (1974). [CrossRef]
  26. L. F. Richardson, “The problem of continuity: an appendix of statistics of deadly quarrels,” Gen. Syst. Yearbook 6, 139–187 (1961).
  27. E. E. Underwood, K. Banerji, “Fractals in fractography,” Mater. Sci. Eng. 80, 1–14 (1986). [CrossRef]
  28. B. J. West, A. L. Goldberger, “Physiology in fractal dimensions,” Am. Sci. 75, 354–365 (1987).
  29. M. V. Berry, Z. V. Lewis, “On the Weierstrauss–Mandelbrot fractal function,” Proc. R. Soc. London Ser. A 370, 459–484 (1980). [CrossRef]
  30. W. Feller, An Introduction to Probability Theory and Its Applications, 2nd ed. (Wiley, New York, 1971), Vol. II.
  31. R. D. Mauldin, S. C. Williams, “On the Hausdorff dimension of some graphs,” Trans. Am. Math. Soc. 298, 793–803 (1986). [CrossRef]
  32. M. F. Shlesinger, B. D. Hughes, “Analogs of renormalization group transformations in random processes,” Physica 109A, 597–608 (1981).
  33. E. A. Novikov, Soviet Phys. Dokl. 11, 497–501 (1966).
  34. M. Nauenberg, “Scaling representation for critical phenomena,” J. Phys. A Gen. Phys. 8, 925–928 (1975). [CrossRef]
  35. T. Niemeijer, J. M. J. van Leeuwen, in Phase Transition and Critical Phenomena, C. Domb, M. S. Green, eds. (Academic, London1976), Vol. 6.
  36. G. Jona-Lasinio, “The renormalization group: a probabilistic view,” Nuovo Cimento 26B, 99–119 (1975).
  37. B. J. West, V. Bhargava, A. L. Goldberger, “Beyond the principle of similitude: renormalization in the bronchial tree,” J. Appl. Physiol. 60, 1089–1097 (1986). [PubMed]
  38. A. L. Goldberger, B. J. West, “Fractals: a contemporary mathematical concept with applications to physiology and medicine,” Yale J. Biol. Med. 60, 104–119 (1987).
  39. A. L. Goldberger, V. Bhargava, B. J. West, A. J. Mandel, “On a mechanism of cardiac electrical stability: the fractal hypothesis,” Biophys. J. 48, 525–528 (1985). [CrossRef] [PubMed]
  40. M. Ausloos, D. H. Berman, “A multivariate Weierstrass–Mandelbrot function,” Proc. R. Soc. London Ser. A 400, 331–350 (1985). [CrossRef]
  41. G. Neumann, W. J. Pierson, Principles of Physical Oceanography (Prentice-Hall, Englewood Cliffs, N.J., 1966).
  42. K. J. Falconer, The Geometry of Fractal Sets (Cambridge U. Press, Cambridge, 1985). [CrossRef]
  43. O. M. Phillips, The Dynamics of the Upper Ocean, 2nd ed. (Cambridge U. Press, London, 1977).
  44. W. J. Pierson, “Wind generated gravity waves,” Adv. Geophys. 2, 93–178 (1955). [CrossRef]
  45. S. Kitaigorodskii, “On the theory of the equilibrium range in the spectrum of wind-generated gravity waves,” J. Phys. Oceanogr. 13, 816–827 (1983). [CrossRef]
  46. G. I. Barenblatt, I. A. Leykin, “On the self-similar spectra of wind waves in the high frequency range,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 17, 35–41 (1981).
  47. R. E. Glazman, P. B. Weichman, “Statistical geometry of a small patch in a developed sea,” J. Geophys. Res. 94, 4998–5010 (1989). [CrossRef]
  48. V. E. Zakharov, N. N. Filonenki, “The energy spectrum for stochastic oscillation of a fluid’s surface,” Dokl. Akad. Nauk SSSR 170, 1292–1295 (1966).
  49. C. A. Aviles, C. H. Scholz, “Fractal analysis of characteristic fault segments of the San Andres fault system,” Eos 66, 314–321 (1985).
  50. H. G. Booker, J. A. Ratcliffe, D. H. Shinn, “Diffraction from an irregular screen with applications to ionosphere problems,” Philos. Trans. R. Soc. London A 242, 579–591 (1950). [CrossRef]
  51. V. Tatarskii, The Effects of Turbulent Atmospheres on Wave Propagation (National Technical Information Service, Springfield, Va.1971).
  52. G. H. Hardy, Divergent Series (Oxford U. Press, London, 1949).
  53. B. J. West, M. F. Shlesinger, “On the ubiquity of 1/f-noise,” Int. J. Mod. Phys. B 3s, 795–820 (1989). [CrossRef]
  54. E. W. Montroll, M. F. Shlesinger, “On 1/f-noise and distributions with long tails,” Proc. Natl. Acad. Sci. USA 79, 3380–3387 (1982). [CrossRef]
  55. V. B. Gnedenko, A. N. Kolmogorov, Limit Distributions for Sums of Independent Random Variables, K. L. Chang, transl. (Addison-Wesley, Reading, Mass., 1968).
  56. R. Uimeki, C. H. Lin, K. C. Yeh, “Multifrequency spectra of ionospheric amplitude scintillations,” J. Geophys. Res. 82, 2752–2760 (1977). [CrossRef]
  57. C. L. Rino, “A power law phase screen model for ionospheric scintillations 1. Weak scatter,” Radio Sci. 14, 1135–1146 (1979);“2. Strong scatter,” Radio Sci. 14, 1147–1155 (1979). [CrossRef]
  58. R. L. Fante, “Some physical insights into beam propagation in strong turbulence,” Radio Sci. 15, 757–762 (1980). [CrossRef]
  59. M. V. Berry, “Diffractals,” J. Phys. A 12, 781–797 (1979). [CrossRef]
  60. M. Marians, “Computed scintillation spectra for strong turbulence,” Radio Sci. 10, 115–119 (1975). [CrossRef]
  61. E. Jakeman, J. G. McWhirter, “Correlation function dependence of scintillation behind a deep random phase screen,” J. Phys. A 10, 1599–1643 (1977). [CrossRef]
  62. G. Bourgois, “About the ergodicity hypothesis in random propagation studies,” Astron. Astrophys. 102, 218–222 (1981).
  63. D. N. Matheson, L. T. Little, “Radio scintillation due to plasma irregularities with power law spectra: the interplanetary medium,” Planet. Space Sci. 19, 1615–1624 (1971). [CrossRef]
  64. D. Gabor, “Theory of communication,” J. Inst. Electr. Eng. (London) 93, 429–457 (1946).
  65. J. Morlet, G. Arens, E. Fourgeau, D. Giord, “Wave propagation and sampling theory—part I: complex signal and scattering in multilayered media,” Geophysica 47, 203–221 (1982);“part II: sampling theory and complex waves,” Geophysica 47, 222–236 (1982). [CrossRef]
  66. A. Grossmann, J. Morlet, “Decomposition of functions into wavelets of constant shape, and related transform,” in Mathematics & Physics, L. Streit, ed. (World Scientific, Singapore, 1985), p. 135.
  67. A. Arneodo, G. Grasseau, M. Holschneider, “Wavelet transform of multifractals,” Phys. Rev. Lett. 61, 2281–2284 (1988). [CrossRef] [PubMed]
  68. A. Arneodo, F. Argoul, J. Elezgaray, G. Gresseau, Centre de Recherche Paul Pascal, Domaine Universitaire, 33405 Talence Cedex, France, “Wavelet transform analysis of fractals: application to nonequilibrium phase transitions,” (preprint).
  69. I. Daubechies, AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey07974, “The wavelet transform, time-frequency localization and signal analysis,” (preprint).
  70. T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Prococcia, B. I. Shraiman, “Fractal measures and their singularities: the characterization of strange sets,” Phys. Rev. A 33, 1141–1150 (1986). [CrossRef] [PubMed]
  71. F. Argoul, A. Arneodo, G. Grasseau, Y. Gagne, E. J. Hopfinger, U. Frisch, “Wavelet analysis of turbulence reveals the multifractal nature of the Richardson cascade,” Nature (London) 338, 51–53 (1989). [CrossRef]
  72. L. F. Richardson, “Atmospheric diffusion shown on a distance–neighbor graph,” Proc. R. Soc. London Ser. A 110, 709–725 (1926). [CrossRef]
  73. B. B. Mandelbrot, “Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of carrier,” J. Fluid Mech. 62, 331–358 (1974). [CrossRef]
  74. K. Sreenivasan, C. Meneveau, “The fractal facets of turbulence,” J. Fluid Mech. 173, 357–386 (1986). [CrossRef]
  75. C. Meneveau, K. R. Sreenivasan, Center for Applied Mathematics, Yale University, New Haven, Connecticut 06520, “The multifractal spectrum of the dissipation field in turbulent flows,” (preprint).
  76. P. L. Turcotte, “Fractals in fluid mechanics,” Annu. Rev. Fluid Mech. 20, 5–16 (1988). [CrossRef]
  77. M. F. Shlesinger, B. J. West, J. Klafter, “Lévy dynamics of enhanced diffusion; application to turbulence,” Phys. Rev. Lett. 58, 1100–1103 (1987). [CrossRef] [PubMed]
  78. H. Takayasu, “Stable distribution and Levy process in fractal turbulence,” Prog. Theor. Phys. 72, 471–479 (1984). [CrossRef]
  79. U. Frisch, P. Sulem, M. Nelkin, “A simple dynamical model of intermittent fully developed turbulence,” J. Fluid Mech. 87, 719–736 (1978). [CrossRef]
  80. B. D. Hughes, M. F. Shlesinger, E. W. Montroll, “Random walks with self-similar clusters,” Proc. Nat. Acad. Sci. USA 78, 3287–3291 (1981) [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited