OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 7, Iss. 8 — Aug. 1, 1990
  • pp: 1399–1420

Three-dimensional (vector) rigorous coupled-wave analysis of anisotropic grating diffraction

Elias N. Glytsis and Thomas K. Gaylord  »View Author Affiliations


JOSA A, Vol. 7, Issue 8, pp. 1399-1420 (1990)
http://dx.doi.org/10.1364/JOSAA.7.001399


View Full Text Article

Enhanced HTML    Acrobat PDF (2624 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The rigorous coupled-wave analysis of diffraction by grating(s) formed in general anisotropic media is reviewed and extended. The method is first applied to a single slanted phase and/or amplitude grating with general three-dimensional incidence of a plane wave. The regions external to the grating can be isotropic, uniaxial, or biaxial anisotropic. The cases of gratings in isotropic media and of the grating vector lying in the plane of incidence (scalar analysis) are obtained as limiting cases of this general analysis. Coupling between the two orthogonal polarizations vanishes in these limiting cases. The Bragg conditions for various combinations of ordinary (for isotropic and uniaxial) and extraordinary (for uniaxial) polarized waves are quantified. The analysis is then extended to multiple cascaded gratings and to volume-superposed gratings. Sample calculations are presented for single anisotropic gratings (a lithium niobate photorefractive hologram in air and an interdigitated-electrode-induced grating in an electro-optic crystal), for multiple cascaded gratings (a lithium niobate hologram with grating strength varying with thickness), and for superposed gratings (multiplexed hologram storage). Applications for this analysis include optical storage, switching, modulation, deflection, optical interconnects, beam splitting, beam combining, and data processing.

© 1990 Optical Society of America

History
Original Manuscript: November 9, 1989
Manuscript Accepted: March 30, 1990
Published: August 1, 1990

Citation
Elias N. Glytsis and Thomas K. Gaylord, "Three-dimensional (vector) rigorous coupled-wave analysis of anisotropic grating diffraction," J. Opt. Soc. Am. A 7, 1399-1420 (1990)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-7-8-1399


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. R. Aggrawal, “Diffraction of light by ultrasonic waves,” Proc. Indian Acad. Sci. A 31, 417–426 (1950).
  2. W. R. Klein, B. D. Cook, “Unified approach to ultrasonic light diffraction,” IEEE Trans. Sonics Ultrason. SU-14, 123–134 (1967). [CrossRef]
  3. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
  4. P. Phariseau, “On the diffraction of light by progressive supersonic waves,” Proc. Indian Acad. Sci. Sect. A 44, 165–170 (1965).
  5. G. L. Fillmore, R. F. Tynan, “Sensitometric characteristics of hardened dichromated gelatin films,” J. Opt. Soc. Am. 61, 199–203 (1974). [CrossRef]
  6. J. A. Kong, “Second-order coupled-mode equations for spatially periodic media,” J. Opt. Soc. Am. 67, 825–829 (1977). [CrossRef]
  7. R. Magnusson, T. K. Gaylord, “Analysis of multiwave diffraction by thick gratings,” J. Opt. Soc. Am. 67, 1165–1170 (1977). [CrossRef]
  8. M. G. Moharam, T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811–818 (1981). [CrossRef]
  9. M. G. Moharam, T. K. Gaylord, “Rigorous coupled-wave analysis of grating diffraction—E-mode polarization and losses,” J. Opt. Soc. Am. 73, 451–455 (1983). [CrossRef]
  10. M. G. Moharam, T. K. Gaylord, “Three-dimensional vector coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 73, 1105–1112 (1983). [CrossRef]
  11. K. Rokushima, J. Yamakita, “Analysis of anisotropic dielectric gratings,” J. Opt. Soc. Am. 73, 901–908 (1983). [CrossRef]
  12. T. K. Gaylord, M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73, 894–937 (1985). [CrossRef]
  13. E. N. Glytsis, T. K. Gaylord, “Rigorous three-dimensional coupled-wave diffraction analysis of single and cascaded anisotropic gratings,” J. Opt. Soc. Am. A 4, 2061–2080 (1987). [CrossRef]
  14. T. Tamir, H. C. Wang, A. A. Oliner, “Wave propagation in sinusoidally stratified dielectric media,” IEEE Trans. Microwave Theory Tech. MTT-12, 323–335 (1964). [CrossRef]
  15. T. Tamir, H. C. Wang, “Scattering of electromagnetic waves by a sinusoidally stratified half space: I. Formal solution and analysis approximations,” Can. J. Phys. 44, 2073–2094 (1966). [CrossRef]
  16. T. Tamir, “Scattering of electromagnetic waves by a sinusoidally stratified half space: II. Diffraction aspects at the Rayleigh and Bragg wavelengths,” Can. J. Phys. 44, 2461–2494 (1966). [CrossRef]
  17. C. B. Burckhardt, “Diffraction of a plane wave at a sinusoidally stratified dielectric grating,” J. Opt. Soc. Am. 56, 1502–1509 (1966). [CrossRef]
  18. L. Bergstein, D. Kermisch, “Image storage and reconstruction in volume holography,” Proc. Symp. Mod. Opt. 17, 655–680 (1967).
  19. R. S. Chu, T. Tamir, “Guided wave theory of light diffraction by acoustic microwaves,” IEEE Trans. Microwave Theory Tech. MTT-18, 486–504 (1970).
  20. R. S. Chu, T. Tamir, “Wave propagation and dispersion in space time periodic media,” Proc. Inst. Electr. Eng. 119, 797–806 (1972). [CrossRef]
  21. F. G. Kaspar, “Diffraction by thick, periodically stratified gratings with complex dielectric constant,” J. Opt. Soc. Am. 63, 37–45 (1973). [CrossRef]
  22. S. T. Peng, T. Tamir, H. L. Bertoni, “Theory of periodic dielectric waveguides,” IEEE Trans. Microwave Theory Tech. MTT-23, 123–133 (1975). [CrossRef]
  23. R. S. Chu, J. A. Kong, “Modal theory of spatially periodic media,” IEEE Trans. Microwave Theory Tech. MTT-25, 18–24 (1977).
  24. M. D. Feit, J. A. Fleck, “Light propagation in graded-index optical fibers,” Appl. Opt. 17, 3990–3998 (1978). [CrossRef] [PubMed]
  25. D. Yevick, L. Thylén, “Analysis of gratings by the beam propagation method,” J. Opt. Soc. Am. 72, 1084–1089 (1982). [CrossRef]
  26. L. Thylén, D. Yevick, “Beam propagation method in anisotropic media,” Appl. Opt. 21, 2751–2754 (1982). [CrossRef] [PubMed]
  27. D. Yevick, B. Hermansson, “Soliton analysis with the propagating beam method,” Opt. Commun. 47, 101–106 (1983). [CrossRef]
  28. L. Thylén, “The beam propagation method: an analysis of its applicability,” Opt. Quantum Electron. 15, 433–439 (1983). [CrossRef]
  29. R. V. Johnson, A. R. Tanguay, “Optical beam propagation method for birefringent phase grating diffraction,” Opt. Eng. 25, 235–249 (1986). [CrossRef]
  30. R. Alferness, S. K. Case, “Coupling in doubly exposed, thick holographic gratings,” J. Opt. Soc. Am. 65, 730–739 (1975). [CrossRef]
  31. S. K. Case, “Coupled-wave theory for multiply exposed thick holographic gratings,” J. Opt. Soc. Am. 65, 724–729 (1975). [CrossRef]
  32. R. Kowarschik, “Diffraction efficiency of sequentially stored gratings in transmission volume holograms,” Opt. Acta 25, 67–81 (1978). [CrossRef]
  33. R. Kowarschik, “Diffraction efficiency of sequentially stored gratings in reflection volume holograms,” Opt. Quantum Electron. 10, 171–178 (1978). [CrossRef]
  34. C. W. Slinger, L. Solymar, “Grating interactions in holograms recorded with two object waves,” Appl. Opt. 25, 3283–3287 (1986). [CrossRef] [PubMed]
  35. B. Benlarbi, L. Solymar, “The effect of the relative intensity of the reference beam on the reconstructing properties of volume phase holograms,” Opt. Acta 26, 271–278 (1979). [CrossRef]
  36. N. Tsukada, R. Tsujinishi, K. Tomishima, “Effects of the relative phase relationships of gratings on diffraction from thick holograms,” J. Opt. Soc. Am. 69, 705–711 (1979). [CrossRef]
  37. P. D. Bloch, L. Solymar, “Analysis of a 4-port Bragg device,” Proc. Inst. Electr. Eng. Part H 127, 133–137 (1980).
  38. W. J. Burke, P. Sheng, “Crosstalk noise from multiple thick-phase holograms,” J. Appl. Phys. 48, 681–685 (1977). [CrossRef]
  39. D. A. Woodbury, T. A. Rabson, F. K. Tittel, “Hologram indexing in LiNbO3with a tunable pulsed laser source,” Appl. Opt. 18, 2555–2558 (1979). [CrossRef] [PubMed]
  40. R. A. Bartolini, A. Bloom, J. S. Escher, “Multiple storage of holograms in an organic medium,” Appl. Phys. Lett. 28, 506–507 (1976). [CrossRef]
  41. V. V. Kazankova, V. I. Protasevich, Y. A. Pryakhin, “Superposition of holograms taking into account the limits of the dynamic range of the photographic layer,” Opt. Spectrosc. (USSR) 44, 324–326 (1978).
  42. H. Lee, “Cross-talk effects in multiplexed volume holograms,” Opt. Lett. 13, 874–876 (1988). [CrossRef] [PubMed]
  43. E. N. Glytsis, T. K. Gaylord, “Rigorous 3-D coupled wave diffraction analysis of multiple superposed gratings in anisotropic media,” Appl. Opt. 28, 2401–2421 (1989). [CrossRef] [PubMed]
  44. C. M. Verber, “Integrated-optical approaches to numerical optical computing,” Proc. IEEE 72, 942–953 (1984). [CrossRef]
  45. R. P. Kenan, “Theory of diffraction of guided optical waves by thick holograms,” J. Appl. Phys. 46, 4545–4551 (1975). [CrossRef]
  46. E. N. Glytsis, T. K. Gaylord, “Anisotropic guided-wave diffraction by interdigitated-electrode-induced phase gratings,” Appl. Opt. 27, 5035–5050 (1988). [CrossRef]
  47. A. Knoesen, T. K. Gaylord, M. G. Moharam, “Hybrid guided modes in uniaxial dielectric planar waveguides,” IEEE J. Lightwave Technol. LT-6, 1083–1104 (1988). [CrossRef]
  48. A. Knoesen, M. G. Moharam, T. K. Gaylord, “Electromagnetic propagation at interfaces and in waveguides in uniaxial crystals: surface impedance/admittance approach,” Appl. Phys. B 38, 171–178 (1985). [CrossRef]
  49. D. Maystre, “Integral methods,” in Electromagnetic Theory of Gratings, R. Petit, ed. (Springer-Verlag, Berlin, 1980), pp. 85–88.
  50. S. L. Chuang, J. A. Kong, “Wave scattering from periodic dielectric surface for a general angle of incidence,” Radio Sci. 17, 545–557 (1982). [CrossRef]
  51. M. G. Moharam, T. K. Gaylord, “Chain-matrix analysis of arbitrary-thickness dielectric reflection gratings,” J. Opt. Soc. Am. 72, 187–190 (1982). [CrossRef]
  52. R. S. Weis, T. K. Gaylord, “Electromagnetic transmission and reflection characteristics of anisotropic multilayered structures,” J. Opt. Soc. Am. A 3, 1720–1740 (1987). [CrossRef]
  53. D. W. Berreman, “Optics in stratified and anisotropic media,” J. Opt. Soc. Am. 62, 502–510 (1972). [CrossRef]
  54. P. Yeh, “Electromagnetic propagation in birefringent layered media,” J. Opt. Soc. Am. 69, 742–756 (1979). [CrossRef]
  55. P. J. Lin-Chung, S. Teitler, “4 × 4 matrix formalisms for optics in stratified anisotropic media,” J. Opt. Soc. Am. A 1, 703–705 (1984). [CrossRef]
  56. R. W. Dixon, “Acoustic diffraction of light in anisotropic media,” IEEE J. Quantum Electron. QE-3, 85–93 (1967). [CrossRef]
  57. I. P. Kaminow, An Introduction to Electrooptic Devices (Academic, New York, 1974).
  58. R. S. Weis, T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985). [CrossRef]
  59. M. G. Moharam, T. K. Gaylord, R. Magnusson, “Criteria for Bragg regime diffraction by phase gratings,” Opt. Commun. 32, 14–18 (1980). [CrossRef]
  60. E. N. Glytsis, T. K. Gaylord, M. G. Moharam, “Electric field, permittivity, and strain distributions induced by interdigitated electrodes on electro-optic waveguides,” IEEE J. Lightwave Technol. LT-5, 668–683 (1987). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited