OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 7, Iss. 8 — Aug. 1, 1990
  • pp: 1514–1528

Design of binary-phase and multiphase Fourier gratings for array generation

Joseph N. Mait  »View Author Affiliations


JOSA A, Vol. 7, Issue 8, pp. 1514-1528 (1990)
http://dx.doi.org/10.1364/JOSAA.7.001514


View Full Text Article

Enhanced HTML    Acrobat PDF (1625 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A review and comparison of design procedures for binary-phase and multiphase Fourier gratings used as array generators is presented. Grating structures include one- and two-dimensional binary-phase Dammann gratings, general binary-phase gratings, quarternary-phase Dammann gratings, and kinoforms for which coherent and incoherent designs are considered. One coherent method of design is that due to Dammann, which involves the solution of a set of N nonlinear equations in N unknowns. Although Dammann’s method generates little error, it does not permit the explicit maximization of diffraction efficiency. To increase diffraction efficiency, Dammann’s method is modified such that diffraction efficiency is a design parameter. To ensure the existence of a grating that has high diffraction and generates the desired source array, the number of grating parameters are increased, and an incoherent design is considered. Simulated annealing is applied to the solution of this problem. Examples of grating design using the different techniques are presented.

© 1990 Optical Society of America

History
Original Manuscript: October 23, 1989
Manuscript Accepted: March 17, 1990
Published: August 1, 1990

Citation
Joseph N. Mait, "Design of binary-phase and multiphase Fourier gratings for array generation," J. Opt. Soc. Am. A 7, 1514-1528 (1990)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-7-8-1514


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. B. Lesem, P. M. Hirsch, J. A. Jordan, “The kinoform: A new wavefront reconstruction device,” IBM J. Res. Dev. 13, 150–155 (1969). [CrossRef]
  2. See, for example, the Session 2 papers on fabrication in Holographic Optics: Optically and Computer Generated, I. N. Cindrich, S. H. Lee, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1052(1989).
  3. J. A. Davis, S. W. Connely, G. W. Bach, R. A. Lilly, D. M. Contrell, “Programmable optical interconnections with large fan-out capability using the magneto-optic spatial light modulator,” Opt. Lett. 14, 102–104 (1989). [CrossRef] [PubMed]
  4. M. W. Farn, J. W. Goodman, “Optimal binary phase-only matched filters,” Appl. Opt. 27, 4431–4437 (1988). [CrossRef] [PubMed]
  5. D. A. Buralli, G. M. Morris, “Design of a wide-field diffractive landscape lens,” Appl. Opt. (to be published).
  6. Other applications were presented at the Symposium on Novel Applications of Diffractive Optics at the 1989 Annual Meeting of the Optical Society of America.
  7. H. Dammann, K. Görtler, “High-efficiency in-line multiple imaging by means of multiple phase holograms,” Opt. Commun. 3, 312–315 (1971). [CrossRef]
  8. H. Dammann, E. Klotz, “Coherent optical generation and inspection of two-dimensional periodic structures,” Opt. Acta 24, 505–515 (1977). [CrossRef]
  9. F. B. McCormick, “Generation of large spot arrays from a single laser beam by multiple imaging with binary phase gratings,” Opt. Eng. 28, 299–304 (1989). [CrossRef]
  10. U. Killat, G. Rabe, W. Rave, “Binary phase gratings for star couplers with high splitting ratio,” Fiber Integ. Opt. 4, 159–167 (1982). [CrossRef]
  11. W. B. Veldkamp, J. R. Leger, G. J. Swanson, “Coherent summation of laser beams using binary phase gratings,” Opt. Lett. 11, 303–305 (1986). [CrossRef] [PubMed]
  12. J. N. Mait, K.-H. Brenner, “Optical symbolic substitution: system design using phase-only holograms,” Appl. Opt. 27, 1692–1700 (1988). [CrossRef] [PubMed]
  13. J. N. Mait, “Design of Dammann gratings for optical symbolic substitution,” in Optical Computing 88, J. W. Goodman, P. Chavel, G. Roblin, eds., Proc. Soc. Photo-Opt. Instrum. Eng.963, 646–652 (1989). [CrossRef]
  14. R. Thalmann, G. Pedrini, B. Acklin, R. Dändliker, “Optical symbolic substitution using diffraction gratings,” in Optical Computing 88, J. W. Goodman, P. Chavel, G. Roblin, eds., Proc. Soc. Photo-Opt. Instrum. Eng.963, 635–641 (1989). [CrossRef]
  15. J. Jahns, N. Streibl, S. J. Walker, “Multilevel phase structures for array generation,” in Holographic Optics: Optically and Computer Generated, I. N. Cindrich, S. H. Lee, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1052, 198–203 (1989). [CrossRef]
  16. J. Jahns, M. M. Downs, M. E. Prise, N. Streibl, S. J. Walker, “Dammann gratings for laser beam shaping,” Opt. Eng. 28, 1267–1275 (1989). [CrossRef]
  17. M. R. Feldman, C. C. Guest, “High efficiency hologram encoding for generation of spot arrays,” Opt. Lett. 14, 479–481 (1989). [CrossRef] [PubMed]
  18. M. S. Kim, C. C. Guest, “Block quantization of an annealed binary phase hologram for interconnects,” in Optical Information Processing Systems and Architectures, B. Javidi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1151 (to be published).
  19. J. Turunen, A. Vasara, J. Westerholm, G. Lin, A. Salin, “Optimisation and fabrication of grating beamsplitters,” J. Phys. D 21, S102–S105 (1988). [CrossRef]
  20. J. Turunen, A. Vasara, J. Westerholm, “Kinoform phase relief synthesis: a new method,” submitted to Opt. Eng.
  21. N. C. Gallagher, B. Liu, “Method for computing kinoforms that reduces image reconstruction error,” Appl. Opt. 12, 2328–2335 (1973). [CrossRef] [PubMed]
  22. F. Wyrowski, “Coding and quantization techniques in digital phase holography,” in Holographic Optics II: Principles and Applications, G. M. Morris, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1136 (to be published).
  23. J. N. Mait, “Extensions to Dammann’s method of binary-phase grating design,” Holographic Optics: Optically and Computer Generated, I. N. Cindrich, S. H. Lee, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1052, 41–46 (1989). [CrossRef]
  24. J. N. Mait, “Design of Dammann gratings for two-dimensional, nonseparable, noncentrosymmetric responses,” Opt. Lett. 14, 196–198 (1989). [CrossRef] [PubMed]
  25. J. Turunen, A. Vasara, J. Westerholm, “Generalized two-dimensional binary phase gratings,” presented at the 1988 Annual Meeting of the Optical Society of America.
  26. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing (Cambridge U. Press, Cambridge, 1986).
  27. Corrected data from Ref. 8 for N= 3 and N= 4 (corrections shown in boldface):Nηze,1ze,2ze,3ze,4337.70.1810.3100.436365.50.1220.3440.395356.70.0380.3270.468466.30.1000.1590.3701.492
  28. U. Krackhardt, N. Streibl, “Design of Dammann-gratings for array generation,” Opt. Commun. (to be published).
  29. B. K. Jennison, J. P. Allebach, D. W. Sweeney, “Iterative approaches to computer-generated holography,” Opt. Eng. 28, 629–637 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited