OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 8, Iss. 8 — Aug. 1, 1991
  • pp: 1330–1339

Spatial summation properties of directionally selective mechanisms in human vision

Stephen J. Anderson and David C. Burr  »View Author Affiliations


JOSA A, Vol. 8, Issue 8, pp. 1330-1339 (1991)
http://dx.doi.org/10.1364/JOSAA.8.001330


View Full Text Article

Enhanced HTML    Acrobat PDF (1274 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Our goal in this paper was to measure psychophysically the receptive-field size of motion units in human vision. To this aim, length and width spatial summation functions were measured for drifting (8-Hz) sinusoidal gratings of spatial frequencies 0.1, 1.0, and 10.0 cycles per degree (c/deg) with two threshold criteria: direction discrimination and simple detection. For each spatial frequency, contrast sensitivity for detection of the direction of drift increased with increasing stimulus size (length or width), at first rapidly (slope ≥ 1.0) and then more gradually (slope 0.29). For most stimuli, the detection and direction-discrimination contrast thresholds were nearly the same. However, for stimuli severely curtailed in width, significantly more contrast was required for direction discrimination than for detection. These results were predicted with a summation model, which incorporated three-dimensional (space–space–time) linear input filters, and probability summation over space and among different filter types. The fit of the model gave an estimate of both the receptive-field length and width of motion-detector units in human vision. At each spatial frequency, the estimates of receptive-field width and length were similar, indicating that the receptive fields of motion-detector units are as long as they are wide at all spatial scales. Receptive-field size varied from approximately 0.12 cycle at 0.1 c/deg to 0.52 cycle at 10.0 c/deg.

© 1991 Optical Society of America

History
Original Manuscript: November 21, 1989
Revised Manuscript: December 19, 1990
Manuscript Accepted: March 29, 1991
Published: August 1, 1991

Citation
Stephen J. Anderson and David C. Burr, "Spatial summation properties of directionally selective mechanisms in human vision," J. Opt. Soc. Am. A 8, 1330-1339 (1991)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-8-8-1330

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you wish to use one of your free member downloads to view the figures, click "Enhanced HTML" above and access the figures from the article itself or from the navigation tab.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited