Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Matrix method for integrating-sphere calculations

Not Accessible

Your library or personal account may give you access

Abstract

A simple matrix technique is presented for modeling integrating-sphere performance. The method is applicable to any sphere configuration, including those with flat areas, specular samples, and baffles, and is especially effective when used in computer simulations of sphere irradiance. The formalism can accommodate the angular sensitivity of any detector or the bidirectional-reflectance distribution function of any sample. Examples of simple analytical solutions are presented, and computer simulation is demonstrated with calculations of the irradiance inhomogeneities caused by underfilling a flat sample. In particular, the simulation shows that, when the input beam does not completely fill a flat sample, the sample is surrounded by a band of reduced irradiance. Outside this dark band, the irradiance is increased slightly. The width of the dark band, but not its depth, increases as the beam size decreases relative to the sample size. The depth depends on sample size and reflectance. Outside the dark-band region, the irradiance shifts due to sample underfilling are much smaller than the easily avoidable, first-order errors caused by neglecting the flat-sample effects.

© 1991 Optical Society of America

Full Article  |  PDF Article
More Like This
Calculation of the T matrix and the scattering matrix for ensembles of spheres

Daniel W. Mackowski and Michael I. Mishchenko
J. Opt. Soc. Am. A 13(11) 2266-2278 (1996)

Flat-sample and limited-field effects in integrating sphere measurements

Herbert L. Tardy
J. Opt. Soc. Am. A 5(2) 241-245 (1988)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (47)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved