OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 9, Iss. 11 — Nov. 1, 1992
  • pp: 1937–1954

Atmospheric turbulence and the resolution limits of large ground-based telescopes

T. Stewart McKechnie  »View Author Affiliations


JOSA A, Vol. 9, Issue 11, pp. 1937-1954 (1992)
http://dx.doi.org/10.1364/JOSAA.9.001937


View Full Text Article

Enhanced HTML    Acrobat PDF (2675 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Conventional theory of imaging through the atmosphere is based on two main assumptions: (1) atmospheric turbulence is assumed to follow a Kolmogorov spectrum and (2) the outer scale, Lo, is assumed to be much larger than any telescope. There are numerous reports in the literature, however, of image properties that are not consistent with this theory—for example, cores in star images and lack of expected image motion. In almost every case these reports are consistent with a smaller value of Lo. There is also evidence of smaller Lo from other, more direct sources such as balloonborne temperature probes and long-baseline interferometry. If Lo is smaller than previously thought, as is suggested here, many long-held ideas about imaging with ground-based telescopes will have to be modified. A much more favorable picture emerges, especially at near-infrared wavelengths. At these wavelengths, resolution in the range 0.03–0.1 arcsec should be routinely attainable with 4–10-m telescopes, even though seeing at visible wavelengths is only 1 arcsec. To attain such high levels of resolution, telescopes must be built to diffraction-limited standards rather than to the currently accepted standards, which fall well short of this limit. Recent images obtained at 2.2 μm with the 4-m Kitt Peak telescope show that very high resolution (0.1 arcsec) is attainable. The images also show that telescope aberrations prevent even higher resolution (0.05 arcsec). A further benefit of a smaller Lo is that the isoplanatic angle of the atmosphere at near-infrared wavelengths is likely to be much larger than previously thought. Thus much wider angular regions are available from which to select suitably bright stars for guiding and tracking. A small Lo also means that ground-based infrared laser beams may be focused to diffraction-limited accuracy on targets in space without necessarily having to use wave-front compensation.

© 1992 Optical Society of America

History
Original Manuscript: May 21, 1990
Revised Manuscript: April 3, 1992
Manuscript Accepted: July 8, 1992
Published: November 1, 1992

Citation
T. Stewart McKechnie, "Atmospheric turbulence and the resolution limits of large ground-based telescopes," J. Opt. Soc. Am. A 9, 1937-1954 (1992)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-9-11-1937

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you wish to use one of your free member downloads to view the figures, click "Enhanced HTML" above and access the figures from the article itself or from the navigation tab.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited