OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 9, Iss. 12 — Dec. 1, 1992
  • pp: 2206–2217

Diffraction properties of stratified volume holographic optical elements

Gregory P. Nordin, Richard V. Johnson, and Armand R. Tanguay, Jr.  »View Author Affiliations


JOSA A, Vol. 9, Issue 12, pp. 2206-2217 (1992)
http://dx.doi.org/10.1364/JOSAA.9.002206


View Full Text Article

Enhanced HTML    Acrobat PDF (1647 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a unified treatment of the diffraction properties of stratified volume holographic optical elements (SVHOE’s). We show that the relative phasing of the diffraction orders as they propagate from layer to layer gives rise to a unique notched diffraction response of the +1 order (for the case of Bragg incidence) as a function of the normalized buffer-layer thickness, the grating spatial frequency, and the readout wavelength. For certain combinations of these parameters Bragg diffraction behavior characteristic of volume holographic optical elements (VHOE’s) is observed, whereas for other combinations pure Raman–Nath behavior periodically recurs. By using these same relative-phasing arguments, the principal features of the periodic angular sensitivity of the +1 and −1 orders can be predicted. In addition to examining the fundamental aspects of SVHOE diffraction behavior, we discuss several possible applications, including optical array generation, spatial frequency filtering, and wavelength notch filtering. With the use of the SVHOE concept, holographic materials with otherwise exemplary characteristics that are currently available only in thin-film form can be used in structures designed either to access unique SVHOE diffraction properties or to emulate conventional VHOE’s.

© 1992 Optical Society of America

History
Original Manuscript: May 28, 1992
Manuscript Accepted: July 13, 1992
Published: December 1, 1992

Citation
Gregory P. Nordin, Richard V. Johnson, and Armand R. Tanguay, "Diffraction properties of stratified volume holographic optical elements," J. Opt. Soc. Am. A 9, 2206-2217 (1992)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-9-12-2206


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Wagner, D. Psaltis, “Multilayer optical learning networks,” Appl. Opt. 28, 5061–5074 (1987), [CrossRef]
  2. D. Z. Anderson, D. M. Lininger, “Dynamic optical interconnects: volume holograms as optical two-port operators,” Appl. Opt. 26, 5031–5038 (1987). [CrossRef] [PubMed]
  3. D. Psaltis, D. Brady, X.-G. Gu, K. Hsu, “Optical implementation of neural computers,” in Optical Processing and Computing, H. Arsenault, ed. (Academic, San Diego, Calif., 1988).
  4. D. Psaltis, D. J. Brady, K. Wagner, “Adaptive optical networks using photorefractive crystals,” Appl. Opt. 27, 1752–1758 (1988). [CrossRef]
  5. E. G. Paek, J. R. Wullert, J. S. Patel, “Holographic implementation of a learning machine based on a multicategory perceptron algorithm,” Opt. Lett. 14, 1303–1305 (1989). [CrossRef] [PubMed]
  6. J. H. Hong, S. Campbell, P. Yeh, “Optical pattern classifier with perceptron learning,” Appl. Opt. 29, 3019–3025 (1990). [CrossRef] [PubMed]
  7. P. Asthana, G. Nordin, S. Piazzolla, A. R. Tanguay, B. K. Jenkins, “Analysis of interchannel crosstalk and throughput efficiency in highly multiplexed fan-out/fan-in holographic interconnections,” in Annual Meeting, Vol. 15 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), p. 242.
  8. D. L. Staebler, W. J. Burke, W. Phillips, J. J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped lithium niobate,” Appl. Phys. Lett. 26, 182–184 (1975). [CrossRef]
  9. F. H. Mok, M. C. Tackitt, H. M. Stoll, “Storage of 500 high-resolution holograms in a LiNbO3 crystal,” Opt. Lett. 16, 605–607 (1991). [CrossRef] [PubMed]
  10. A. M. Glass, D. D. Nolte, D. H. Olson, G. E. Doran, D. S. Chemla, W H. Knox, “Resonant photodiffractive four-wave mixing in semi-insulating GaAs/AlGaAs quantum wells,” Opt. Lett. 15, 264–266 (1990). [CrossRef] [PubMed]
  11. A. Partovi, A. M. Glass, D. H. Olson, G. J. Zydik, K. T. Short, R. D. Feldman, R. F. Austin, “High sensitivity optical image processing device based on CdZnTe/ZnTe multiple quantum well structures,” Appl. Phys. Lett. 59, 1832–1834 (1991). [CrossRef]
  12. A. R. Tanguay, R. V. Johnson, “Stratified volume holographic optical elements,” J. Opt. Soc. Am. A 3 (13), P53 (1986).
  13. R. V. Johnson, A. R. Tanguay, “Stratified volume holographic optical elements,” Opt. Lett. 13, 189–191 (1988). [CrossRef] [PubMed]
  14. R. V. Johnson, A. R. Tanguay, “Stratified volume holographic optical elements,” Opt. News 14 (12), 30–31 (1988). [CrossRef]
  15. G. P. Nordin, R. V. Johnson, A. R. Tanguay, “Physical characterization of stratified volume holographic optical elements,” in Annual Meeting, Vol. 11 of 1988 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1988), p. 106.
  16. L. Domash, J. Schwartz, A. Nelson, P. Levin, “Active holographic interconnects for interfacing volume storage,” in Image Storage and Retrieval Systems, A. Jamberdino, W. Niblack, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1662, 211–218 (1991). [CrossRef]
  17. J. A. Fleck, J. R. Morris, M. D. Feit, “Time-dependent propagation of high energy laser beams through the atmosphere,” Appl. Phys. 10, 129–160 (1976). [CrossRef]
  18. D. Yevick, L. Thylen, “Analysis of gratings by the beam-propagation method,” J. Opt. Soc. Am. 72, 1081–1089 (1982). [CrossRef]
  19. R. V. Johnson, A. R. Tanguay, “Optical beam propagation method for birefringent phase grating diffraction,” Opt. Eng. 25, 235–249 (1986). [CrossRef]
  20. M. D. Feit, J. A. Fleck, “Light propagation in graded-index optical fibers,” Appl. Opt. 17, 3990–3998 (1978). [CrossRef] [PubMed]
  21. L. Thylen, D. Yevick, “Beam propagation method in anisotropic media,” Appl. Opt. 21, 2751–2754 (1982). [CrossRef] [PubMed]
  22. H. J. Caulfield, D. H. McMahon, R. A. Soref, “Stacked hologram apparatus,” U.S. patent3,635,538 (January18, 1972).
  23. H. J. Caulfield, “Stacked page oriented holographic memory,” in Holographic Optics: Design and Applications, I. Cindrich, ed., Proc. Soc. Photo-Opt. Instrum. Eng.883, 203–206 (1988). [CrossRef]
  24. D. Pohl, “Stacked optical memories,” Appl. Opt. 13, 341–346 (1974). [CrossRef] [PubMed]
  25. J. B. Thaxter, M. Kestigian, “Unique properties of SBN and their use in a layered optical memory,” Appl. Opt. 13, 913–924 (1974). [CrossRef] [PubMed]
  26. K. Chalasinska-Macukow, B. Karczewski, T. Szoplik, “Reconstruction of two stacked Fourier holograms,” Opt. Commun. 27, 311–316 (1978). [CrossRef]
  27. K. Chalasinska-Macukow, T. Szoplik, “Reconstruction of two stacked Fourier holograms—experiments and results,” Opt. Commun. 33, 245–250 (1980). [CrossRef]
  28. J. Slaby, T. Szoplik, K. Chalasinska-Macukow, “Cascaded phase Fourier holograms,” Opt. Acta 30, 529–543 (1983). [CrossRef]
  29. J. Slaby, T. Szoplik, “Resonant modes in a cascaded system of Fourier holograms,” Opt. Acta 33, 301–313 (1986). [CrossRef]
  30. D. J. De Bitetto, “On the intensifying property of a pile-of-gratings,” Appl. Opt. 9, 59–61 (1970). [CrossRef] [PubMed]
  31. L. E. Hargrove, “Diffraction of light passing through two adjacent ultrasonic progressive waves of different frequency,” J. Acoust. Soc. Am. 32, 940 (1960). [CrossRef]
  32. L. E. Hargrove, E. A. Hiedemann, R. Mertens, “Diffraction of light by two spatially separated parallel ultrasonic waves of different frequency,” Z. Phys. 167, 326–336 (1962). [CrossRef]
  33. P. Kwiek, “Light diffraction by two spatially separated ultrasonic waves,” J. Acoust. Soc. Am. 86, 2261–2272 (1989). [CrossRef]
  34. V. N. Malysh, O. I. Ovcharenko, A. N. Osovitskii, “Light diffraction by a layered structure with periodically modulated interfaces,” Opt. Spectrosc. (USSR) 58, 513–516 (1985).
  35. K. Kodate, T. Kamiya, M. Kamiyama, “Double diffraction in the Fresnel region,” Jpn. J. Appl. Phys. 10, 1040–1045 (1971). [CrossRef]
  36. K. Kodate, T. Kamiya, H. Takenaka, H. Yanai, “Double diffraction of phase gratings in the Fresnel region,” Jpn. J. Appl. Phys. 14, 1323–1334 (1975). [CrossRef]
  37. D. A. Larson, T. D. Black, M. Green, R. G. Torti, Y. J. Wang, R. Magnusson, “Optical modulation by a traveling surface acoustic wave and a holographic reference grating,” J. Opt. Soc. Am. A 7, 1745–1750 (1990). [CrossRef]
  38. F. Calligaris, P. Ciuti, I. Gabrielli, “Temporal light modulation in thick-screen diffraction by ultrasound beam plus amplitude grating,” J. Acoust. Soc. Am. 61, 959–964 (1977). [CrossRef]
  39. V. A. Komotskii, V. F. Nikulin, “Theoretical analysis of diffraction of a Gaussian optical beam by a system of two diffraction gratings,” Opt. Spectrosc. (USSR) 63, 239–242 (1987).
  40. A. F. Bessonov, L. N. Deryugin, V. A. Komotskii, “Phenomena of optical wave diffraction by traveling spatial phase modulation on stationary phase gratings,” Opt. Spectrosc. (USSR) 49, 81–84 (1980).
  41. V. A. Komatskii, T. D. Black, “Analysis and application of stationary reference grating method for optical detection of surface acoustic waves,” J. Appl. Phys. 51, 129–136 (1981). [CrossRef]
  42. B. Y. Zel’dovich, T. Y. Yakovleva, “Theory of a two-layer hologram,” Sov. J. Quantum. Electron. 14, 323–328 (1984). [CrossRef]
  43. B. Y. Zel’dovich, D. I. Mirovitskii, N. V. Rostovtseva, O. B. Serov, “Characteristics of two-layer phase holograms,” Sov. J. Quantum. Electron. 14, 364–369 (1984). [CrossRef]
  44. N. N. Evtikhiev, D. I. Mirovitskiy, N. V. Rostovtseva, O. B. Serov, T. V. Yakovleva, B. Y. Zel’dovich, “Bilayer holograms: theory and experiment,” Opt. Acta 33, 255–268 (1986). [CrossRef]
  45. N. N. Evtikhiev, D. I. Mirovitskii, N. V. Rostovtseva, O. B. Serov, “Multilayer holographic functional element in an analog-digital converter,” Sov. J. Quantum. Electron. 16, 1180–1184 (1987). [CrossRef]
  46. M. Kujawinska, “Fresnel-field analysis of double-grating systems and their application in phase-stepping grating interferometers,” J. Opt. Soc. Am. A 5, 849–857 (1988). [CrossRef]
  47. M. C. Gupta, “Diffraction of a light beam by doubly periodic structures,” Opt. Lett. 16, 1301–1303 (1991). [CrossRef] [PubMed]
  48. M. Kujawinska, “Development of the theory of quasi-periodic diffraction grating systems,” J. Opt. Soc. Am. A 5, 206–213 (1988). [CrossRef]
  49. A. P. Yakimovich, “Multilayer three-dimensional holographic gratings,” Opt. Spectrosc. (USSR) 49, 85–88 (1980).
  50. H. Blok, G. Mur, “Diffraction by a double grating,” Appl. Sci. Res. 26, 389–397 (1972). [CrossRef]
  51. S.-W. Lee, G. Zarrillo, C.-L. Law, “Simple formulas for transmission through periodic metal grids or plates,” IEEE Trans. Antennas Propag. AP-30, 904–909 (1982).
  52. R. Petit, G. Tayeb, “Theoretical and numerical study of gratings consisting of periodic arrays of thin and lossy strips,” J. Opt. Soc. Am. A 7, 1686–1692 (1990). [CrossRef]
  53. R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971).
  54. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
  55. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, Calif., 1968).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited