OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 9, Iss. 5 — May. 1, 1992
  • pp: 765–774

Transition from the paraxial approximation to exact solutions of the wave equation and application to Gaussian beams

A. Wünsche  »View Author Affiliations


JOSA A, Vol. 9, Issue 5, pp. 765-774 (1992)
http://dx.doi.org/10.1364/JOSAA.9.000765


View Full Text Article

Enhanced HTML    Acrobat PDF (1317 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Two related basic transition operators, T1 and T2, are found that transform arbitrary solutions of the parabolic equation of the paraxial approximation into exact monochromatic solutions of the scalar wave equation or of the corresponding Helmholtz equation. The operators realize different boundary conditions. The operator T1 preserves the transverse field distribution of the paraxial approximation in the plane z = 0 for the obtained exact solution. The method is applied to calculate the complete corrections to the paraxial approximation of the fundamental Gaussian beam solutions of the n-dimensional wave equation. The lowest-order correction to the paraxial approximation in the three-dimensional case is found to be in agreement with the result of Agrawal and Pattanayak [ J. Opt. Soc. Am. 69, 575 ( 1979)]. The complete series of corrections on the axis is summed up to a transcendental function and discussed for the three-dimensional case.

© 1992 Optical Society of America

History
Original Manuscript: October 17, 1990
Revised Manuscript: October 21, 1991
Manuscript Accepted: November 1, 1991
Published: May 1, 1992

Citation
A. Wünsche, "Transition from the paraxial approximation to exact solutions of the wave equation and application to Gaussian beams," J. Opt. Soc. Am. A 9, 765-774 (1992)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-9-5-765


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Kogelnik, T. Li, “Laser beams and resonators,” Appl. Opt. 10, 1550–1567 (1966). [CrossRef]
  2. S. Solimeno, B. Crosignani, P. Di Porto, Guiding, Diffraction, and Confinement of Optical Radiation (Academic, New York, 1986).
  3. M. Lax, W. H. Louisell, W. B. McKnight, “From Maxwell to paraxial optics,” Phys. Rev. A 11, 1365–1370 (1975). [CrossRef]
  4. L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. A 19, 1177–1179 (1979). [CrossRef]
  5. G. P. Agrawal, D. N. Pattanayak, “Gaussian beam propagation beyond the paraxial approximation,”J. Opt. Soc. Am. 69, 575–578 (1979). [CrossRef]
  6. G. P. Agrawal, M. Lax, “Free-space wave propagation beyond the paraxial approximation,” Phys. Rev. A 27, 1693–1695 (1983). [CrossRef]
  7. M. Couture, P. A. Bélanger, “From Gaussian beam to complex-source-point spherical wave,” Phys. Rev. A 24, 355–359 (1981). [CrossRef]
  8. B. T. Landesman, H. H. Barrett, “Gaussian amplitude functions that are exact solutions to the scalar Helmholtz equation,” J. Opt. Soc. Am. A 5, 1610–1619 (1988). [CrossRef]
  9. B. T. Landesman, “Geometrical representation of the fundamental mode of a Gaussian beam in oblate spheroidal coordinates,” J. Opt. Soc. Am. A 6, 5–17 (1989). [CrossRef]
  10. A. WiInsche, “Generalized Gaussian beam solutions of paraxial optics and their connection to a hidden symmetry,” J. Opt. Soc. Am. A 6, 1320–1329 (1989). [CrossRef]
  11. H. Bateman, A. Erdélyi, Higher Transcendental Functions (McGraw-Hill, New York, 1953), Vol. 2.
  12. G. C. Sherman, H. J. Bremermann, “Generalization of the angular spectrum of plane waves and the diffraction transform,”J. Opt. Soc. Am. 59, 146–156 (1969). [CrossRef]
  13. G. C. Sherman, “Diffracted wave fields expressible by plane-wave expansions containing only homogeneous waves,”J. Opt. Soc. Am. 59, 697–711 (1969). [CrossRef]
  14. M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions, Natl. Bur. Stand. (U.S.) Appl. Math. Ser. 55, (1964).
  15. E. T. Whittaker, G. N. Watson, A Course of Modern Analysis (Cambridge U. Press, Cambridge, 1952).
  16. G. M. Fikhtengolts, Course of Differential and Integral Calculus (in Russian) (Fizmatgiz, Moscow, 1959), Vol. II.
  17. I. S. Gradshteyn, I. M. Ryshik, Tables of Integrals, Series and Products (Academic, New York, 1965).
  18. A. Wünsche, “Grenzbedingungen der Elektrodynamik für Medien mit räiumlicher Dispersion und Übergangsschichten,” Ann. Phys. (Leipzig) 37, 121–142 (1980).
  19. E. M. Lifshits, P. L. Pitayevskyi, Physical Kinetics, Vol. 10 of Course on Theoretical Physics, L. D. Landau, E. M. Lifshits, eds. (Pergamon, Oxford, 1981) [Fizicheskaya Kinetika(Nauka, Moscow, 1979)].

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited