OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 9, Iss. 7 — Jul. 1, 1992
  • pp: 1072–1085

Joint estimation of object and aberrations by using phase diversity

Richard G. Paxman, Timothy J. Schulz, and James R. Fienup  »View Author Affiliations

JOSA A, Vol. 9, Issue 7, pp. 1072-1085 (1992)

View Full Text Article

Enhanced HTML    Acrobat PDF (1542 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The joint estimation of an object and the aberrations of an incoherent imaging system from multiple images incorporating phase diversity is investigated. Maximum-likelihood estimation is considered under additive Gaussian and Poisson noise models. Expressions for an aberration-only objective function that accommodates an arbitrary number of diversity images and its gradient are derived for the case of a Gaussian noise model. Expressions for the log-likelihood function and its gradient are presented for the case of Poisson noise. An expectation-maximization algorithm that enforces a nonnegativity constraint in a natural fashion is constructed for use in the Poisson noise case.

© 1992 Optical Society of America

Original Manuscript: September 30, 1991
Revised Manuscript: January 6, 1992
Manuscript Accepted: January 7, 1992
Published: July 1, 1992

Richard G. Paxman, Timothy J. Schulz, and James R. Fienup, "Joint estimation of object and aberrations by using phase diversity," J. Opt. Soc. Am. A 9, 1072-1085 (1992)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. D. Gonglewski, C. R. DeHainaut, C. M. Lampkin, R. C. Dymale, “System design of a wavefront sensing package for a wide field of view optical phased array,” Opt. Eng. 27, 785–792 (1988). [CrossRef]
  2. J. N. Cederquist, J. R. Fienup, C. C. Wackerman, S. R. Robinson, D. Kryskowski, “Wave-front phase estimation from Fourier intensity measurements,” J. Opt. Soc. Am. A 6, 1020–1026 (1989). [CrossRef]
  3. R. G. Lyon, “HST phase retrieval: a parameter estimation,” in Applications of Digital Image Processing XIV, A. G. Tescher, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1567, 317–326 (1991). [CrossRef]
  4. J. R. Fienup, “Phase retrieval for the Hubble Space Telescope using iterative propagation algorithms,” in Applications of Digital Image Processing XIV, A. G. Tescher, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1567, 327–332 (1991). [CrossRef]
  5. R. A. Gonsalves, R. Childlaw, “Wavefront sensing by phase retrieval,” in Applications of Digital Image Processing III, A. G. Tescher, ed., Proc. Soc. Photo-Opt. Instrum. Eng.207, 32–39 (1979). [CrossRef]
  6. R. A. Gonsalves, “Phase retrieval and diversity in adaptive optics,” Opt. Eng. 21, 829–832 (1982). [CrossRef]
  7. R. G. Paxman, J. R. Fienup, “Optical misalignment sensing and image reconstruction using phase diversity,” J. Opt. Soc. Am. A 5, 914–923 (1988). [CrossRef]
  8. R. G. Paxman, S. L. Crippen, “Aberration correction for phased-array telescopes using phase diversity,” in Digital Image Synthesis and Inverse Optics, A. F. Gmitro, P. S. Idell, I. J. LaHaie, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1351, 787–797 (1990). [CrossRef]
  9. J. M. Mendel, Lessons in Digital Estimation Theory (Prentice-Hall, Englewood Cliffs, N.J., 1987).
  10. A. V. Oppenheim, R. W. Schafer, Discrete-Time Signal Processing (Prentice-Hall, Englewood Cliffs, N.J., 1989).
  11. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, Calif., 1968).
  12. F. Roddier, “Passive versus active methods in optical interferometry,” in Proceedings of the ESO/NOAO Conference on High Resolution Imaging by Interferometry, F. Merkle, ed. (European Southern Observatory, Garching, Federal Republic of Germany, 1988), pp. 565–574.
  13. J. Primot, G. Rousset, J. C. Fontanella, “Deconvolution from wave-front sensing: a new technique for compensating turbulence-degraded images,” J. Opt. Soc. Am. A 7, 1598–1608 (1990). [CrossRef]
  14. J. D. Gonglewski, D. G. Voelz, J. S. Fender, D. C. Dayton, B. K. Spielbusch, R. E. Pierson, “First astronomical application of postdetection turbulence compensation: images of αAurigae, νUrsae Majoris, and αGeminorum using self-referenced speckle holography,” Appl. Opt. 29, 4527–4529 (1990). [CrossRef] [PubMed]
  15. D. C. Luenberger, Linear and Nonlinear Programming (Addison-Wesley, Reading, Mass., 1984).
  16. D. L. Snyder, D. G. Politte, “Image reconstruction from list-mode data in an emission tomography system having time-of-flight measurements,”IEEE Trans. Nucl. Sci. NS-30, 1843–1849 (1983). [CrossRef]
  17. D. G. Politte, “Reconstruction algorithms for time-of-flight assisted positron-emission tomographs,” M.S. thesis (Sever Institute of Technology, Washington University, St. Louis, Mo., 1983).
  18. L. Kaufman, “Implementing and accelerating the EM algorithm for positron emission tomography,”IEEE Trans. Med. Imag. MI-6, 37–51 (1987). [CrossRef]
  19. A. P. Dempster, N. M. Laird, D. B. Rubin, “Maximum likelihood from incomplete data via the EM algorithm,”J. R. Stat. Soc. Ser. B 39, 1–38 (1977).
  20. C. F. J. Wu, “On the convergence properties of the EM algorithm,” Ann. Stat. 11, 95–103 (1983). [CrossRef]
  21. Y. Vardi, L. A. Shepp, L. Kaufman, “A statistical model for positron emission tomography,”J. Am. Stat. Assoc. 80, 8–38 (1985). [CrossRef]
  22. W. H. Richardson, “Bayesian-based iterative method of image restoration,”J. Opt. Soc. Am. 62, 55–59 (1972). [CrossRef]
  23. L. B. Lucy, “An iterative technique for the rectification of observed distributions,” Astron. J. 79, 745–754 (1974). [CrossRef]
  24. N. B. Baranova, B. Y. Zel’dovich, “Dislocations of the wave-front surface and zeros of the amplitude,” Sov. Phys. JETP 53, 925–929 (1981).
  25. L. A. Shepp, Y. Vardi, “Maximum-likelihood reconstruction for emission tomography,”IEEE Trans. Med. Imag. MI-1, 113–121 (1982). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited