## Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy

JOSA A, Vol. 23, Issue 12, pp. 3177-3190 (2006)

http://dx.doi.org/10.1364/JOSAA.23.003177

Acrobat PDF (2394 KB)

### Abstract

The concept of numerical parametric lenses (NPL) is introduced to achieve wavefront reconstruction in digital holography. It is shown that operations usually performed by optical components and described in ray geometrical optics, such as image shifting, magnification, and especially complete aberration compensation (phase aberrations and image distortion), can be mimicked by numerical computation of a NPL. Furthermore, we demonstrate that automatic one-dimensional or two-dimensional fitting procedures allow adjustment of the NPL parameters as expressed in terms of standard or Zernike polynomial coefficients. These coefficients can provide a quantitative evaluation of the aberrations generated by the specimen. Demonstration is given of the reconstruction of the topology of a microlens.

© 2006 Optical Society of America

## 1. INTRODUCTION

1. U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. **13**, R85–R101 (2002). [CrossRef]

2. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. **24**, 291–293 (1999). [CrossRef]

3. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. **38**, 6994–7001 (1999). [CrossRef]

4. P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. **42**, 1938–1946 (2003). [CrossRef] [PubMed]

3. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. **38**, 6994–7001 (1999). [CrossRef]

6. A. Stadelmaier and J. H. Massig, “Compensation of lens aberrations in digital holography,” Opt. Lett. **25**, 1630–1632 (2000). [CrossRef]

7. S. De Nicola, A. Finizio, G. Pierattini, D. Alfieri, S. Grilli, L. Sansone, and P. Ferraro, “Recovering correct phase information in multiwavelength digital holographic microscopy by compensation for chromatic aberrations,” Opt. Lett. **30**, 2706–2708 (2005). [CrossRef] [PubMed]

8. S. De Nicola, P. Ferraro, A. Finizio, and G. Pierattini, “Wave front reconstruction of Fresnel off-axis holograms with compensation of aberrations by means of phase-shifting digital holography,” Opt. Lasers Eng. **37**, 331–340 (2002). [CrossRef]

9. S. Grilli, P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, and R. Meucci, “Whole optical wavefields reconstruction by digital holography,” Opt. Express **9**, 294–302 (2001). [CrossRef] [PubMed]

10. S. De Nicola, P. Ferraro, A. Finizio, and G. Pierattini, “Correct-image reconstruction in the presence of severe anamorphism by means of digital holography,” Opt. Lett. **26**974–976 (2001). [CrossRef]

11. S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, and D. Alfieri, “Angular spectrum method with correction of anamorphism for numerical reconstruction of digital holograms on tilted planes,” Opt. Express **13**, 9935–9940 (2005). [CrossRef] [PubMed]

12. S. De Nicola, P. Ferraro, A. Finizio, S. Grilli, and G. Pierattini, “Experimental demonstration of the longitudinal image shift in digital holography,” Opt. Eng. (Bellingham) **42**, 1625–1630 (2003). [CrossRef]

13. T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, “Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation,” Appl. Opt. **45**, 851–863 (2006). [CrossRef] [PubMed]

14. P. Ferraro, S. De Nicola, G. Coppola, A. Finizio, D. Alfieri, and G. Pierattini, “Controlling image size as a function of distance and wavelength in Fresnel-transform reconstruction of digital holograms,” Opt. Lett. **29**, 854–856 (2004). [CrossRef] [PubMed]

15. J. Kato, I. Yamaguchi, and T. Matsumura, “Multicolor digital holography with an achromatic phase shifter,” Opt. Lett. **27**, 1403–1405 (2002). [CrossRef]

16. I. Yamaguchi, T. Matsumura, and J. Kato, “Phase-shifting color digital holography,” Opt. Lett. **27**, 1108–1110 (2002). [CrossRef]

17. P. Almoro, M. Cadatal, W. Garcia, and C. Saloma, “Pulsed full-color digital holography with a hydrogen Raman shifter,” Appl. Opt. **43**, 2267–2271 (2004). [CrossRef] [PubMed]

18. B. Javidi, P. Ferraro, S.-H Hong, S. D. Nicola, A. Finizio, D. Alfieri, and G. Pierattini, “Three-dimensional image fusion by use of multiwavelength digital holography,” Opt. Lett. **30**, 144–146 (2005). [CrossRef] [PubMed]

19. G. Indebetouw and P. Klysubun, “Optical sectioning with low coherence spatiotemporal holography,” Opt. Commun. **172**, 25–29 (1999). [CrossRef]

20. M. K. Kim, “Tomographic three-dimensional imaging of a biological specimen using wavelength-scanning digital interference holography,” Opt. Express **7**, 305–310 (2000). [CrossRef] [PubMed]

21. A. Dakoff, J. Gass, and M. K. Kim, “Microscopic three-dimensional imaging by digital interference holography,” J. Electron. Imaging **12**, 643–647 (2003). [CrossRef]

22. P. Massatsch, F. Charrière, E. Cuche, P. Marquet, and C. Depeursinge, “Time-domain optical coherence tomography with digital holographic microscopy,” Appl. Opt. **44**, 1806–1812 (2005). [CrossRef] [PubMed]

23. A. Thelen, J. Bongartz, D. Giel, S. Frey, and P. Hering, “Iterative focus detection in hologram tomography,” J. Opt. Soc. Am. A **22**, 1176–1180 (2005). [CrossRef]

24. L. Martínez-León, G. Pedrini, and W. Osten, “Applications of short-coherence digital holography in microscopy,” Appl. Opt. **44**, 3977–3984 (2005). [CrossRef] [PubMed]

25. L. Yu and M. K. Kim, “Wavelength scanning digital interference holography for variable tomographic scanning,” Opt. Express **13**, 5621–5627 (2005). [CrossRef] [PubMed]

26. F. Charrière, A. Marian, F. Montfort, J. Kühn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. **31**, 178–180 (2006). [CrossRef] [PubMed]

*et al.*proposed to control the scaling in SFTF by padding the holograms with zeros before the reconstruction.[14

14. P. Ferraro, S. De Nicola, G. Coppola, A. Finizio, D. Alfieri, and G. Pierattini, “Controlling image size as a function of distance and wavelength in Fresnel-transform reconstruction of digital holograms,” Opt. Lett. **29**, 854–856 (2004). [CrossRef] [PubMed]

*et al.*proposed another method to keep the original pixel number in SFTF.[27

27. F. C. Zhang, I. Yamaguchi, and L. P. Yaroslavsky, “Algorithm for reconstruction of digital holograms with adjustable magnification,” Opt. Lett. **29**, 1668–1670 (2004). [CrossRef] [PubMed]

13. T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, “Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation,” Appl. Opt. **45**, 851–863 (2006). [CrossRef] [PubMed]

## 2. EXPERIMENTAL SETUPS

2. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. **24**, 291–293 (1999). [CrossRef]

3. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. **38**, 6994–7001 (1999). [CrossRef]

22. P. Massatsch, F. Charrière, E. Cuche, P. Marquet, and C. Depeursinge, “Time-domain optical coherence tomography with digital holographic microscopy,” Appl. Opt. **44**, 1806–1812 (2005). [CrossRef] [PubMed]

**O**transmitted or reflected by the specimen and produces a magnified image of the specimen at a distance

*d*behind the CCD camera. As explained in detail in Ref. [3

**38**, 6994–7001 (1999). [CrossRef]

**O**emerging directly from the magnified image of the specimen and not from the specimen itself.

**O**and the reference wave

**R**creates the hologram intensityThis hologram is digitized by a black and white CCD camera and then recorded on a computer. The digital hologram

29. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. **39**, 4070–4075 (2000). [CrossRef]

*Ψ*are also computed in the SFTF or CF as follows: where FFT is the fast Fourier transform;

*m*,

*n*,

*k*,

*l*are integers

*d*is the reconstruction distance;

*λ*is the wavelength;

*α*and given by

2. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. **24**, 291–293 (1999). [CrossRef]

*o*is the polynomial order. The Zernike polynomials, further designated by

## 3. PRINCIPLE OF AUTOMATIC PROCEDURES

13. T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, “Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation,” Appl. Opt. **45**, 851–863 (2006). [CrossRef] [PubMed]

*o*is the polynomial order. Equations (12, 11) define two linear systems with

**Z**is the matrix of fitting polynomials in the standard or Zernike model,

**Y**is the vector of the OPL measured values

**45**, 851–863 (2006). [CrossRef] [PubMed]

**45**, 851–863 (2006). [CrossRef] [PubMed]

## 4. RESULTS

### 4A. Application to Quantitative Aberration Measurement

**45**, 851–863 (2006). [CrossRef] [PubMed]

*y*than

*x*), a coma amplitude (

*y*, and finally an important primary spherical aberration

31. F. Charrière, J. Kühn, T. Colomb, F. Monfort, E. Cuche, Y. Emery, K. Weible, P. Marquet, and C. Depeursinge, “Characterization of microlenses by digital holographic microscopy,” Appl. Opt. **45**, 829–835 (2006). [CrossRef] [PubMed]

### 4B. Automatic Region of Interest Centering

32. B. E. Saleh and M. C. Teich, *Fundamentals of Photonics* (Wiley, 1991). [CrossRef]

*θ*from the normal vector to the hologram plane during the recording process [Fig. 6a ]. Let us consider now the wavefront reconstruction from a filtered hologram containing only a virtual image in two different ways.

**45**, 851–863 (2006). [CrossRef] [PubMed]

**R**as illuminating wave. Digitally this amounts to the same thing as computing Eq. (4) or (5) with

**O**, which propagates normally to the hologram plane. Therefore, the ROI is centered in the reconstructed wavefront.

*d*, aliasing could nevertheless appear when

*d*becomes too small (Fig. 8 ). Therefore for any formulation, it is more judicious to suppress the shift or the ROI as presented in Figs. 7g, 7h for CF and in Fig. 8d for SFTF with small reconstruction distance.

### 4C. Manual Shifting in Convolution Formulation

*y*and

*j*direction. The shifting NPL is written aswhere

*θ*may not exceed the maximum value

33. T. Colomb, F. Dürr, E. Cuche, P. Marquet, H. Limberger, R.-P. Salathé, and C. Depeursinge, “Polarization microscopy by use of digital holography: application to optical fiber birefringence measurements,” Appl. Opt. **44**, 4461–4469 (2005). [CrossRef] [PubMed]

### 4D. Numerical Magnification in Convolution Formulation

*f*is placed, the original image plane I defined by the reconstruction distance

*d*(position of the reconstructed virtual image), and the final image plane

*d*from the hologram plane. The magnification

*M*is also calculated from the real object and image distances:The lens equation gives

32. B. E. Saleh and M. C. Teich, *Fundamentals of Photonics* (Wiley, 1991). [CrossRef]

*M*and the initial reconstruction distance

*d*:

### 4E. Complete Aberration Compensation

*c*a constant) for any plane, neglecting the diffraction pattern due to the specimen in defocused planes. The reference and object waves can be defined more generally by introducing the respective phase aberration terms

## 5. APPLICATIONS AND DISCUSSION

### 5A. Compensation for Astigmatism Induced by a Cylindrical Lens

*et al.*present theoretically the potentialities of DHM for astigmatism evaluation and compensation.[9

9. S. Grilli, P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, and R. Meucci, “Whole optical wavefields reconstruction by digital holography,” Opt. Express **9**, 294–302 (2001). [CrossRef] [PubMed]

*et al.*present a method with two different reconstruction distances to achieve astigmatism compensation.[10

10. S. De Nicola, P. Ferraro, A. Finizio, and G. Pierattini, “Correct-image reconstruction in the presence of severe anamorphism by means of digital holography,” Opt. Lett. **26**974–976 (2001). [CrossRef]

*z*direction for different reconstruction distances. Because of astigmatism of the cylindrical lens, there are two partial focal points, one for each direction, localized at

10. S. De Nicola, P. Ferraro, A. Finizio, and G. Pierattini, “Correct-image reconstruction in the presence of severe anamorphism by means of digital holography,” Opt. Lett. **26**974–976 (2001). [CrossRef]

### 5B. Ball Lens as Microscope Objective

## 6. CONCLUSION

## ACKNOWLEDGMENTS

1. | U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. |

2. | E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. |

3. | E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. |

4. | P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. |

5. | G. Pedrini, S. Schedin, and H. J. Tiziani, “Aberration compensation in digital holographic reconstruction of microscopic objects,” J. Mod. Opt. |

6. | A. Stadelmaier and J. H. Massig, “Compensation of lens aberrations in digital holography,” Opt. Lett. |

7. | S. De Nicola, A. Finizio, G. Pierattini, D. Alfieri, S. Grilli, L. Sansone, and P. Ferraro, “Recovering correct phase information in multiwavelength digital holographic microscopy by compensation for chromatic aberrations,” Opt. Lett. |

8. | S. De Nicola, P. Ferraro, A. Finizio, and G. Pierattini, “Wave front reconstruction of Fresnel off-axis holograms with compensation of aberrations by means of phase-shifting digital holography,” Opt. Lasers Eng. |

9. | S. Grilli, P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, and R. Meucci, “Whole optical wavefields reconstruction by digital holography,” Opt. Express |

10. | S. De Nicola, P. Ferraro, A. Finizio, and G. Pierattini, “Correct-image reconstruction in the presence of severe anamorphism by means of digital holography,” Opt. Lett. |

11. | S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, and D. Alfieri, “Angular spectrum method with correction of anamorphism for numerical reconstruction of digital holograms on tilted planes,” Opt. Express |

12. | S. De Nicola, P. Ferraro, A. Finizio, S. Grilli, and G. Pierattini, “Experimental demonstration of the longitudinal image shift in digital holography,” Opt. Eng. (Bellingham) |

13. | T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, “Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation,” Appl. Opt. |

14. | P. Ferraro, S. De Nicola, G. Coppola, A. Finizio, D. Alfieri, and G. Pierattini, “Controlling image size as a function of distance and wavelength in Fresnel-transform reconstruction of digital holograms,” Opt. Lett. |

15. | J. Kato, I. Yamaguchi, and T. Matsumura, “Multicolor digital holography with an achromatic phase shifter,” Opt. Lett. |

16. | I. Yamaguchi, T. Matsumura, and J. Kato, “Phase-shifting color digital holography,” Opt. Lett. |

17. | P. Almoro, M. Cadatal, W. Garcia, and C. Saloma, “Pulsed full-color digital holography with a hydrogen Raman shifter,” Appl. Opt. |

18. | B. Javidi, P. Ferraro, S.-H Hong, S. D. Nicola, A. Finizio, D. Alfieri, and G. Pierattini, “Three-dimensional image fusion by use of multiwavelength digital holography,” Opt. Lett. |

19. | G. Indebetouw and P. Klysubun, “Optical sectioning with low coherence spatiotemporal holography,” Opt. Commun. |

20. | M. K. Kim, “Tomographic three-dimensional imaging of a biological specimen using wavelength-scanning digital interference holography,” Opt. Express |

21. | A. Dakoff, J. Gass, and M. K. Kim, “Microscopic three-dimensional imaging by digital interference holography,” J. Electron. Imaging |

22. | P. Massatsch, F. Charrière, E. Cuche, P. Marquet, and C. Depeursinge, “Time-domain optical coherence tomography with digital holographic microscopy,” Appl. Opt. |

23. | A. Thelen, J. Bongartz, D. Giel, S. Frey, and P. Hering, “Iterative focus detection in hologram tomography,” J. Opt. Soc. Am. A |

24. | L. Martínez-León, G. Pedrini, and W. Osten, “Applications of short-coherence digital holography in microscopy,” Appl. Opt. |

25. | L. Yu and M. K. Kim, “Wavelength scanning digital interference holography for variable tomographic scanning,” Opt. Express |

26. | F. Charrière, A. Marian, F. Montfort, J. Kühn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. |

27. | F. C. Zhang, I. Yamaguchi, and L. P. Yaroslavsky, “Algorithm for reconstruction of digital holograms with adjustable magnification,” Opt. Lett. |

28. | F. Montfort, “Tomography using multiple wavelengths in digital holographic microscopy,” Ph.D. dissertation (Ecole Polytechnique Fédérale de Lausanne, Lausanne, 2005). |

29. | E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. |

30. | “ZEMAX: Optical Design Program, User’s Guide, Version 10.0” (Focus Software, Tucson, 2001), pp. 126–127. |

31. | F. Charrière, J. Kühn, T. Colomb, F. Monfort, E. Cuche, Y. Emery, K. Weible, P. Marquet, and C. Depeursinge, “Characterization of microlenses by digital holographic microscopy,” Appl. Opt. |

32. | B. E. Saleh and M. C. Teich, |

33. | T. Colomb, F. Dürr, E. Cuche, P. Marquet, H. Limberger, R.-P. Salathé, and C. Depeursinge, “Polarization microscopy by use of digital holography: application to optical fiber birefringence measurements,” Appl. Opt. |

34. | F. Montfort, T. Colomb, F. Charrière, J. Kühn, P. Marquet, E. Cuche, S. Herminjard, and C. Depeursinge, “Submicrometer optical tomography by multiple wavelength digital holographic microscopy,” Appl. Opt. (to be published). |

**OCIS Codes**

(090.1000) Holography : Aberration compensation

(090.1760) Holography : Computer holography

(100.5070) Image processing : Phase retrieval

**ToC Category:**

Holography

**History**

Original Manuscript: March 20, 2006

Revised Manuscript: June 21, 2006

Manuscript Accepted: June 26, 2006

**Virtual Issues**

Vol. 2, Iss. 1 *Virtual Journal for Biomedical Optics*

**Citation**

Tristan Colomb, Frédéric Montfort, Jonas Kühn, Nicolas Aspert, Etienne Cuche, Anca Marian, Florian Charrière, Sébastien Bourquin, Pierre Marquet, and Christian Depeursinge, "Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy," J. Opt. Soc. Am. A **23**, 3177-3190 (2006)

http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-23-12-3177

Sort: Year | Journal | Reset

### References

- U. Schnars and W. P. O. Jüptner, "Digital recording and numerical reconstruction of holograms," Meas. Sci. Technol. 13, R85-R101 (2002). [CrossRef]
- E. Cuche, F. Bevilacqua, and C. Depeursinge, "Digital holography for quantitative phase-contrast imaging," Opt. Lett. 24, 291-293 (1999). [CrossRef]
- E. Cuche, P. Marquet, and C. Depeursinge, "Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms," Appl. Opt. 38, 6994-7001 (1999). [CrossRef]
- P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, "Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging," Appl. Opt. 42, 1938-1946 (2003). [CrossRef] [PubMed]
- G. Pedrini, S. Schedin, and H. J. Tiziani, "Aberration compensation in digital holographic reconstruction of microscopic objects," J. Mod. Opt. 48, 1035-1041 (2001).
- A. Stadelmaier and J. H. Massig, "Compensation of lens aberrations in digital holography," Opt. Lett. 25, 1630-1632 (2000). [CrossRef]
- S. De Nicola, A. Finizio, G. Pierattini, D. Alfieri, S. Grilli, L. Sansone, and P. Ferraro, "Recovering correct phase information in multiwavelength digital holographic microscopy by compensation for chromatic aberrations," Opt. Lett. 30, 2706-2708 (2005). [CrossRef] [PubMed]
- S. De Nicola, P. Ferraro, A. Finizio, and G. Pierattini, "Wave front reconstruction of Fresnel off-axis holograms with compensation of aberrations by means of phase-shifting digital holography," Opt. Lasers Eng. 37, 331-340 (2002). [CrossRef]
- S. Grilli, P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, and R. Meucci, "Whole optical wavefields reconstruction by digital holography," Opt. Express 9, 294-302 (2001). [CrossRef] [PubMed]
- S. De Nicola, P. Ferraro, A. Finizio, and G. Pierattini, "Correct-image reconstruction in the presence of severe anamorphism by means of digital holography," Opt. Lett. 26974-976 (2001). [CrossRef]
- S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, and D. Alfieri, "Angular spectrum method with correction of anamorphism for numerical reconstruction of digital holograms on tilted planes," Opt. Express 13, 9935-9940 (2005). [CrossRef] [PubMed]
- S. De Nicola, P. Ferraro, A. Finizio, S. Grilli, and G. Pierattini, "Experimental demonstration of the longitudinal image shift in digital holography," Opt. Eng. (Bellingham) 42, 1625-1630 (2003). [CrossRef]
- T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, "Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation," Appl. Opt. 45, 851-863 (2006). [CrossRef] [PubMed]
- P. Ferraro, S. De Nicola, G. Coppola, A. Finizio, D. Alfieri, and G. Pierattini, "Controlling image size as a function of distance and wavelength in Fresnel-transform reconstruction of digital holograms," Opt. Lett. 29, 854-856 (2004). [CrossRef] [PubMed]
- J. Kato, I. Yamaguchi, and T. Matsumura, "Multicolor digital holography with an achromatic phase shifter," Opt. Lett. 27, 1403-1405 (2002). [CrossRef]
- I. Yamaguchi, T. Matsumura, and J. Kato, "Phase-shifting color digital holography," Opt. Lett. 27, 1108-1110 (2002). [CrossRef]
- P. Almoro, M. Cadatal, W. Garcia, and C. Saloma, "Pulsed full-color digital holography with a hydrogen Raman shifter," Appl. Opt. 43, 2267-2271 (2004). [CrossRef] [PubMed]
- B. Javidi, P. Ferraro, S.-H Hong, S. D. Nicola, A. Finizio, D. Alfieri, and G. Pierattini, "Three-dimensional image fusion by use of multiwavelength digital holography," Opt. Lett. 30, 144-146 (2005). [CrossRef] [PubMed]
- G. Indebetouw and P. Klysubun, "Optical sectioning with low coherence spatiotemporal holography," Opt. Commun. 172, 25-29 (1999). [CrossRef]
- M. K. Kim, "Tomographic three-dimensional imaging of a biological specimen using wavelength-scanning digital interference holography," Opt. Express 7, 305-310 (2000). [CrossRef] [PubMed]
- A. Dakoff, J. Gass, and M. K. Kim, "Microscopic three-dimensional imaging by digital interference holography," J. Electron. Imaging 12, 643-647 (2003). [CrossRef]
- P. Massatsch, F. Charrière, E. Cuche, P. Marquet, and C. Depeursinge, "Time-domain optical coherence tomography with digital holographic microscopy," Appl. Opt. 44, 1806-1812 (2005). [CrossRef] [PubMed]
- A. Thelen, J. Bongartz, D. Giel, S. Frey, and P. Hering, "Iterative focus detection in hologram tomography," J. Opt. Soc. Am. A 22, 1176-1180 (2005). [CrossRef]
- L. Martínez-León, G. Pedrini, and W. Osten, "Applications of short-coherence digital holography in microscopy," Appl. Opt. 44, 3977-3984 (2005). [CrossRef] [PubMed]
- L. Yu and M. K. Kim, "Wavelength scanning digital interference holography for variable tomographic scanning," Opt. Express 13, 5621-5627 (2005). [CrossRef] [PubMed]
- F. Charrière, A. Marian, F. Montfort, J. Kühn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, "Cell refractive index tomography by digital holographic microscopy," Opt. Lett. 31, 178-180 (2006). [CrossRef] [PubMed]
- F. C. Zhang, I. Yamaguchi, and L. P. Yaroslavsky, "Algorithm for reconstruction of digital holograms with adjustable magnification," Opt. Lett. 29, 1668-1670 (2004). [CrossRef] [PubMed]
- F. Montfort, "Tomography using multiple wavelengths in digital holographic microscopy," Ph.D. dissertation (Ecole Polytechnique Fédérale de Lausanne, Lausanne, 2005).
- E. Cuche, P. Marquet, and C. Depeursinge, "Spatial filtering for zero-order and twin-image elimination in digital off-axis holography," Appl. Opt. 39, 4070-4075 (2000). [CrossRef]
- "ZEMAX: Optical Design Program, User's Guide, Version 10.0" (Focus Software, Tucson, 2001), pp. 126-127.
- F. Charrière, J. Kühn, T. Colomb, F. Monfort, E. Cuche, Y. Emery, K. Weible, P. Marquet, and C. Depeursinge, "Characterization of microlenses by digital holographic microscopy," Appl. Opt. 45, 829-835 (2006). [CrossRef] [PubMed]
- B. E. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991). [CrossRef]
- T. Colomb, F. Dürr, E. Cuche, P. Marquet, H. Limberger, R.-P. Salathé, and C. Depeursinge, "Polarization microscopy by use of digital holography: application to optical fiber birefringence measurements," Appl. Opt. 44, 4461-4469 (2005). [CrossRef] [PubMed]
- F. Montfort, T. Colomb, F. Charrière, J. Kühn, P. Marquet, E. Cuche, S. Herminjard, and C. Depeursinge, "Submicrometer optical tomography by multiple wavelength digital holographic microscopy," Appl. Opt. (to be published).

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

### Figures

Fig. 1 |
Fig. 2 |
Fig. 3 |

Fig. 4 |
Fig. 5 |
Fig. 6 |

Fig. 7 |
Fig. 8 |
Fig. 9 |

Fig. 10 |
Fig. 11 |
Fig. 12 |

Fig. 13 |
Fig. 14 |
Fig. 15 |

Fig. 16 |
Fig. 17 |
Fig. 18 |

Fig. 19 |
Fig. 20 |
Fig. 21 |

Fig. 22 |
||

« Previous Article | Next Article »

OSA is a member of CrossRef.