OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 29, Iss. 8 — Aug. 1, 2012
  • pp: 1673–1674
« Show journal navigation

Orthonormal polynomials in wavefront analysis: analytical solution: errata

Virendra N. Mahajan  »View Author Affiliations


JOSA A, Vol. 29, Issue 8, pp. 1673-1674 (2012)
http://dx.doi.org/10.1364/JOSAA.29.001673


View Full Text Article

Acrobat PDF (123 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We address and correct errors that we found in the polynomials and figures in our paper [MahajanV. N.DaiG.-m., J. Opt. Soc. Am. A 24, 2994 (2007)].

© 2012 Optical Society of America

We have found errors in some polynomials and figures in our paper [1

1. V. N. Mahajan and G.-m. Dai, “Orthonormal polynomials in wavefront analysis: analytical solution,” J. Opt. Soc. Am. A 24, 2994–3016 (2007). [CrossRef]

]. The correct polynomials are listed below:
H29(ρ,θ)=(15.56917599ρ+130.07864353ρ3291.15952742ρ5+190.97455178ρ7)sinθ+1.41366362ρ5sin5θ,
H30(ρ,θ)=(15.56917599ρ+130.07864353ρ3291.15952742ρ5+190.97455178ρ7)cosθ1.41366362ρ5cos5θ,
H33(ρ,θ)=(3.87525156ρ+41.84243767ρ3117.56342978ρ5+94.71450820ρ7)sinθ+(38.04631430ρ5+54.80141514ρ7)sin5θ,
H34(ρ,θ)=(3.87525156ρ41.84243767ρ3+117.56342978ρ594.71450820ρ7)cosθ+(38.04631430ρ5+54.80141514ρ7)cos5θ,
H35(ρ,θ)=(3.10311187ρ34.93479698ρ3+102.08124605ρ585.32630533ρ7)sinθ+(6.01202622ρ510.14399046ρ7)sin5θ+8.97812952ρ7sin7θ,
H36(ρ,θ)=(3.10311187ρ34.93479698ρ3+102.08124605ρ585.32630533ρ7)cosθ+(6.01202622ρ5+10.14399046ρ7)cos5θ+8.97812952ρ7cos7θ,
H38(ρ,θ)=(42.96232789+287.78381063ρ2565.13651608ρ4+339.98298180ρ6)ρ2cos2θ+(8.4978641413.58537785ρ2)ρ4cos4θ,
H39(ρ,θ)=(42.96232789+287.78381063ρ2565.13651608ρ4+339.98298180ρ6)ρ2sin2θ(8.4978641413.58537785ρ2)ρ4sin4θ,
H20(x,y)=(2.17600247+13.23551876ρ2+13.64110699ρ4)x119.18577680ρ2x3+95.34862128x5,
H21(x,y)=(2.1760024713.23551876ρ2+45.95178131ρ4)y119.18577680ρ2y3+95.34862128y5,
H29(x,y)=(15.56917599+130.07864353ρ2284.09120931ρ4+190.97455178ρ6)y28.2732724ρ2y3+22.61861792y5,
H30(x,y)=(15.56917599+130.07864353ρ2298.22784553ρ4+190.97455178ρ6)x+28.27327243ρ2x322.61861792x5,
H21(30°)=0.71499593Z30.72488884Z70.46636441Z17+1.72029850Z21,
E6(x,y)=[6/b232b2+3b4][b2(1b2)+b2(3b21)x2(3b2)y2],
E11(ρ,θ)=(5/α)[3+2b2+3b424(1+b2)ρ2+48ρ412(1b2)ρ2cos2θ],
E12=5/8b2(195475b2+558b4422b6+159b815b10)β1Z115/8b2(105205b2+194b4114b6+5b8+15b10)β1Z4+(1/2)15b2(75155b2+174b4134b6+55b815b10)β1Z6102b2(32b2+2b63b8)β1Z11+b2αγ1Z12,
where
β=αγ,
E14=(5/2/4)(1b2)2b4(3510b2b4)γ1Z1+(515/2/8)(1b2)2b4(7+2b2b4)γ1Z415/8b4(3570b2+56b426b6+5b8)γ1Z6+(5/82)(1b2)2b4(7+10b2+7b4)γ1Z11(5/8)b4(76b2+6b67b8)γ1Z12+(γ/8)b4Z14,
E15=(15/4)b3(58b2+3b4)δ1Z5(5/4)(1b4)b3δ1Z13+b3(δ/2)Z15,
R12=(3μ/16a2νη){(105550a2+1559a42836a6+2695a81078a10)Z1+53(1474a2+205a4360a6+335a8134a10)Z4+(5/2)3/2(35156a2+421a4530a6+265a8)Z6+215(14a2+6a44a6)Z11+[(7/2)5/2η/(1a2)]Z12},
where
η=945a2+139a4237a6+201a867a10=(1a2)μ2,
and
S37(x,y)=2.3447555855.32128002ρ2+283.78448194ρ4532.71123567ρ6+332.94452229ρ8+8(12.75329096ρ220.75498320ρ4)x2+8(12.75329096+20.75498320ρ2)x4.

Note that 201 in the definition of η was written incorrectly as 210. The polynomial corrections also apply to Chapter 11 on “Orthonormal polynomials in wavefront analysis” in the Handbook of Optics [2

2. V. N. Mahajan, “Orthonormal polynomials in wavefront analysis,” Handbook of Optics, 3rd ed., V. N. Mahajan, ed., Vol. II (McGraw Hill, 2009), pp. 11.3–11.41.

].

Equations (23) and (24) are in error. They should read as
cj,k=14a1a2aadx1a21a2ZjRkdy
and
14a1a2aadx1a21a2RjRjdy=δjj.

Section 8 should start with “Letting a1”. There is a minor error in Table 16 in that the last item in the first column should be σbs.

The interferograms and PSFs for the astigmatism and spherical aberration polynomials E6, E11, R6, and R11 given in Fig. 12 are also in error. Their correct form is given here in Fig. 1. The second sentence of the caption of Fig. 5 should read “Half width of the square is 1/2.”

Fig. 1. Interferogram and PSF for polynomials E6 (astigmatism), E11 (spherical), R6 (astigmatism), and R11 (spherical) for a sigma value of one wavelength.

ACKNOWLEDGMENTS

The author gratefully acknowledges help from José A. Díaz, Robert W. Gray, and William H. Swantner for identifying the errors and helping with their corrections.

REFERENCES

1.

V. N. Mahajan and G.-m. Dai, “Orthonormal polynomials in wavefront analysis: analytical solution,” J. Opt. Soc. Am. A 24, 2994–3016 (2007). [CrossRef]

2.

V. N. Mahajan, “Orthonormal polynomials in wavefront analysis,” Handbook of Optics, 3rd ed., V. N. Mahajan, ed., Vol. II (McGraw Hill, 2009), pp. 11.3–11.41.

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(010.7350) Atmospheric and oceanic optics : Wave-front sensing
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(220.1010) Optical design and fabrication : Aberrations (global)

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: June 19, 2012
Published: July 24, 2012

Citation
Virendra N. Mahajan, "Orthonormal polynomials in wavefront analysis: analytical solution: errata," J. Opt. Soc. Am. A 29, 1673-1674 (2012)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-29-8-1673


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. N. Mahajan and G.-m. Dai, “Orthonormal polynomials in wavefront analysis: analytical solution,” J. Opt. Soc. Am. A 24, 2994–3016 (2007). [CrossRef]
  2. V. N. Mahajan, “Orthonormal polynomials in wavefront analysis,” Handbook of Optics, 3rd ed., V. N. Mahajan, ed., Vol. II (McGraw Hill, 2009), pp. 11.3–11.41.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited