OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 30, Iss. 11 — Nov. 1, 2013
  • pp: 2347–2355
« Show journal navigation

Waveguide-coupled nanowire as an optical antenna

Laurent Arnaud, Aurélien Bruyant, Mikael Renault, Yassine Hadjar, Rafael Salas-Montiel, Aniello Apuzzo, Gilles Lérondel, Alain Morand, Pierre Benech, Etienne Le Coarer, and Sylvain Blaize  »View Author Affiliations


JOSA A, Vol. 30, Issue 11, pp. 2347-2355 (2013)
http://dx.doi.org/10.1364/JOSAA.30.002347


View Full Text Article

Acrobat PDF (931 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study the optical coupling between a gold nanowire and a silver ion-exchanged waveguide, with special emphasis on the nanowire antenna radiation pattern. We measure the radiation patterns of waveguide-coupled gold nanowires with a height of 70 nm and width of 50 or 150 nm in the 450–700 nm spectral range for TE and TM polarizations. We perform a systematic theoretical study on the wavelength, polarization, nanowire size, and material dependences on the properties of the radiation pattern. We also give some elements concerning absorption and near-field. Experiments and calculations show localized plasmon resonance for the polarization orthogonal to the wire (far-field resonance at 580 nm for the smallest wire and 670 nm for the widest). It is shown that a great variety of radiation patterns can be obtained, together with a high sensitivity to a change of one parameter, particularly near-resonance.

© 2013 Optical Society of America

1. INTRODUCTION

Basically, the wire nanoantenna illuminated by the guided signal will radiate one part of this signal into free space, thus allowing the wave to convert from a guided to a free propagating one. Reciprocally, while in the absence of an object, no propagating light can be coupled into the waveguide because the parallel part of the wave vector is greater in the waveguide than any plane wave in the cladding; the nanowire will allow some coupling into the waveguide. Traditionally, such coupling or decoupling is performed by a grating or by a prism deposited on top of the waveguide. Here we demonstrate that a nanowire allows the same functionality at the nanoscale.

Several applications can result from this far-field/guided-field transducer function, such as laser antennas [10

10. E. Cubukcu, E. Kort, K. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89, 093120 (2006). [CrossRef]

,11

11. H. Hattori, Z. Li, and D. Liu, “Driving plasmonic nanoantennas with triangular lasers and slot waveguides,” Appl. Opt. 50, 2391–2400 (2011). [CrossRef]

] or wireless optical transmission on chip [12

12. A. Alù and N. Engheta, “Wireless at the nanoscale: optical interconnects using matched nanoantennas,” Phys. Rev. Lett. 104, 213902 (2010). [CrossRef]

]. For instance, our team and collaborators proposed earlier in 2007 the concept of an integrated Fourier transform spectrometer [13

13. E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1, 473–478 (2007). [CrossRef]

,14

14. J. Ferrand, G. Custillon, G. Leblond, F. Thomas, T. Moulin, E. Le Coarer, A. Morand, S. Blaize, T. Gonthiez, and P. Benech, “Stationary wave integrated Fourier transform spectrometer (swifts),” Proc. SPIE 7604, 760414 (2010). [CrossRef]

]. In this device, gold nanowires are used to extract locally the electromagnetic signal from a guided light interferogram and to send it onto an integrated detector or intensity measurement and further numerical treatment. With a total size of only a few centimeters, this device reaches a 10 pm resolution. In this integrated spectrometer, the nanowire transmits information that characterizes the local field intensity in the waveguide. Other information, such as the polarization state, the propagation direction, or the local waveguide dimensions also can be recovered from the waveguide-coupled nanowire radiation pattern.

In addition to this near-field/far-field transducer capability, it is well known that metallic nanoantennas can support localized surface plasmon resonances (LSPRs) due to collective oscillations of the free electron gas in the metal. These resonances lead to enhanced scattering and absorption cross sections, allow antenna gain tuning, and provide strong exaltations of the electrical near-field [15

15. K. Kim, S. Yoon, and D. Kim, “Nanowire-based enhancement of localized surface plasmon resonance for highly sensitive detection: a theoretical study,” Opt. Express 14, 12419–12431 (2006). [CrossRef]

]. Such plasmon resonances are now routinely used in surface-enhanced Raman spectroscopy (SERS) as well as in optical sensing based on LSPR spectroscopy.

In the growing field of biosensors, biochips, or lab-on-chip [16

16. MONA, “A European roadmap for photonics and nanotechnologies,” 2008, http://www.ist-mona.org/.

], waveguide-coupled nanoantennas can play an important role. Indeed, the same device allows the excitation of the light-matter interaction effects and the collection in the waveguide of the resulting spectrum for further analysis, allowing, for instance, fully integrated SERS or LSPR sensing [17

17. F. Degirmenci, I. Bulu, P. Deotare, M. Khan, M. Loncar, and F. Capasso, “Waveguide integrated plasmonic platform for sensing and spectroscopy,” Proc. SPIE 7941, 794117 (2011). [CrossRef]

]. Moreover, it is now well known that a strongly enhanced near-field may also be used to trap or manipulate particles [18

18. M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100, 186804 (2008). [CrossRef]

,19

19. L. Novotny, R. Bian, and X. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997). [CrossRef]

].

For all these applications, it is important to characterize the properties of the waveguide-coupled nanowire system; in particular, the coupling efficiency, the polarization sensitivity, the shape of the radiation pattern (directivity), the spectral dependence, and the ratio between absorption and scattering should be quantitatively characterized.

Measured and calculated radiation patterns present a great variety of shapes, as well as a great sensitivity to a change of parameters, such as linewidth, line height, or wavelength. We present a brief parametric study to provide some guidelines and references concerning the effect on the radiation pattern of the wavelength, the polarization, or the nanowire size. In TM polarization, LSPR excitations are observed in the radiated intensity for a given wavelength. The spectral position of the resonances depends on the wire size and material. We also discuss effects other than the radiated far field, such as the absorption spectrum and the optical near-field topology.

2. SAMPLE DESIGN AND FABRICATION

The experimentally studied samples consist of single gold nanowires of different widths, deposited on ion-exchanged waveguides. The waveguides were fabricated by surface silver ion-exchanged on glass [21

21. J. Broquin, “Glass integrated optics: state of the art and position toward other technologies,” Proc. SPIE 6475, 647507 (2007). [CrossRef]

,22

22. A. Tervonen, B. West, and S. Honkanen, “Ion-exchanged glass waveguide technology: a review,” Opt. Eng. 50, 071107 (2011). [CrossRef]

]. In the visible spectrum, this technology presents the advantages of low propagation losses, low birefringence, and compatibility with optical fibers. The nanowires were fabricated on the waveguides by using electron-beam lithography. A chromium layer of estimated thickness of 3 nm was used to allow correct adhesion of gold on the glass surface.

In Fig. 1, we display a 3D schematic and scanning electron micrograph of one of the samples. The width of the ion-exchanged waveguide is 1.3 μm, and the gold nanowire width is 50±10nm for the first sample and 150±10nm for the second one. The nanowire thickness was measured by atomic-force microscopy to be 70±5nm for the total thickness (including chromium layer) and the nanowire length is roughly 20 μm (much larger than the waveguide width).

Fig. 1. (a) Representation of the waveguide-coupled nanowire antenna. (b) Scanning-electrons micrography of our widest waveguide-coupled gold nanowire (height: 70 nm; width: 150 nm; length: 20 μm) on top of a silver ion-exchanged waveguide (width: 1.4 μm). The waveguide appears as a faint contrast horizontal gray band, and the nanowire is the vertical white line.

3. MEASUREMENT SETUP AND CALIBRATION

A. Description of the Setup

The purpose of the experimental setup is to quantitatively characterize the radiation pattern of an isolated nanowire coupled to a waveguide, including the ability to study its spectral properties and to control the polarization state of the guided wave.

The light radiated by the nanowire is collected by a high numerical aperture microscope objective (Fig. 2). Unlike the traditional microscope configuration, where the object plane (sample) is conjugated with the detector (camera CCD), our configuration uses an additional lens to conjugate the CCD camera with the Fourier plane of the microscope objective. The intensity distribution as a function of the wave-vector direction is then directly recorded by the CCD detector. This additional Fourier lens is removable in order to allow direct imaging of the sample. We need this direct imaging, particularly during the alignment of the nanowire with the microscope optical axis.

Fig. 2. Description of the measurement setup.

We use a supercontinuum laser white source, filtered through an acousto-optics tunable filter, delivering a quasi-monochromatic signal with an adjustable wavelength in the 450–700 nm spectral range and a 5 nm bandwith. This light is linearly polarized and is delivered to the waveguide by single-mode polarization maintaining fibers. For obtaining a reference signal, a second fiber is used to collect the light at the end of the waveguide. Each fiber is mounted onto a rotating holder to control the polarization direction.

B. Calibration Procedure

For a quantitative characterization of the nanowire radiation pattern, the radiated intensity has to be normalized by the guided light intensity I0(λ) (Fig. 2). However, I0(λ) cannot be obtained by direct measurement. We can only measure the intensities of the light before the coupling Iin(λ) and the light that does exit from the waveguide and is recoupled into the second optical fiber Iout(λ). These quantities differ from I0(λ) due to the losses that occur either at the coupling between the optical fibers and the waveguide or during the propagation in the waveguide (absorption and scattering losses). Moreover, these losses are strongly wavelength-dependent. For the determination of I0(λ), we perform two series of measurements: one where we couple the light into the waveguide entry e1 and measure the scattered light Se1(λ) and the transmitted light Iout,e1(λ), and the other where we couple the light into entry e2 and measure the scattered light Se2(λ) and the transmitted light Iout,e2(λ). When coupling from entry e1, we have the relationships
I0,e1(λ)=f1(λ)T1(λ)Iin(λ),
(1)
Iout,e1(λ)=f1(λ)T1(λ)f2(λ)T2(λ)Iin(λ),
(2)
where f1, f2 are the fiber/waveguide-coupling coefficients and T1, T2 the waveguide-transmission coefficients (cf. Fig. 2). When coupling from entry e2 we have
I0,e2(λ)=f2(λ)T2(λ)Iin(λ).
(3)
By definition, the α(λ) coefficient is given by
α(λ)=f1(λ)T1(λ)f2(λ)T2(λ)=I0,e1(λ)I0,e2(λ)=Se1(λ)Se2(λ)
(4)
from where we obtain the expressions
f1(λ)T1(λ)=α(λ)Iout,e1(λ)Iin(λ),
(5)
f2(λ)T2(λ)=1α(λ)Iout,e2(λ)Iin(λ).
(6)
With these coefficients, I0(λ) can now be calculated from Eqs. (1) and (3).

4. MODELING

The numerical results reported in this paper have been obtained using the 2D FMM in guided configuration [20

20. P. Lalanne and E. Silberstein, “Fourier-modal methods applied to waveguide computational problems,” Opt. Lett. 25, 1092–1094 (2000). [CrossRef]

], which is a specific adaptation of the classical FMM (also known as rigorous coupled wave analysis) [23

23. M. Moharam, E. Grann, D. Pommet, and T. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995). [CrossRef]

,24

24. M. Neviere and E. Popov, Light Propagation in Periodic Media: Differential Theory and Design (Marcel Dekker, 2003).

] to the case of guiding structures.

Since the method is based on Fourier decomposition, an artificial periodization in the real space results from the discretization in the space of spatial frequencies. This artificial periodization of the structure is made in the (z) direction, transverse to the waveguide [Fig. 3(a)]. Perfectly matched layers (PMLs) are used to avoid cross-cells interference effects.

Fig. 3. (a) Principle of artificial periodization along the z axis of the structure for guided FMM computation. (b) Real part of the magnetic field (TM polarization). (c) Real part of the radiated magnetic field obtained after subtraction of the guided mode. Nanowire cross section 50nm×50nm, wavelength 520 nm, TM polarization.

The complete set of transversal modes of the guiding structure surrounded by the PML is expressed in terms of a Fourier decomposition and is propagated along the waveguide as long as the structure remains unchanged. When a change occurs in the guiding structure (like the presence of the nanowire), a new set of modes are calculated and matched with the preceding one by applying the boundary conditions for the electromagnetic field.

The field distribution as a function of the wave vector kx is obtained by a Fourier decomposition of the real space (x) distribution in an homogeneous region (substrate or superstrate). An effective index method allows us to model the 3D (xyz) guiding structure by a 2D (xz) approximation, which is well verified for low-contrast waveguides. The absorption of the nanowire is then computed using the following expression:
Pabs=S12σ|E|2dxdz,
(7)
where σ is the conductivity of the nanowire and S the nanowire cross section.

A typical result of the guided FMM is shown in Figs. 3(b) and 3(c). 1600 harmonics were used for the computation. The nanowire size was set to 50 nm height and 50 nm length. The amplitude of the magnetic field is shown on Fig. 3(b) when TM polarized light is injected at the left input. Figure 3(c) shows the real part of magnetic field radiated by the nanowire. For this purpose, the guided mode has been simply removed from the set of eigenmodes corresponding to the total magnetic field to only observe the radiated modes. This mode manipulation is straightforward when using a computational method based on mode expansion such as the guided FMM. We can also observe the effect of the PMLs characterized by the high decrease of the light in the up and down layers of the window.

All calculations presented here consider a glass substrate with a refractive index of 1.5, a waveguide thickness of 1 μm with an effective refractive index of 1.51, a gold nanowire of rectangular shape section, in contact with the waveguide and a cover layer with refractive index of 1. All refractive indices were taken from [25

25. E. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1998), Vol. 3.

] and the 3 nm Cr layer was not taken into account [26

26. A. Vial and T. Laroche, “Description of dispersion properties of metals by means of the critical points model and application to the study of resonant structures using the FDTD method,” J. Phys. D 40, 7152 (2007). [CrossRef]

].

5. RADIATION PATTERN SHAPE AND DIRECTIVITY

A. General Description of the Radiation Pattern

1. Bidimensional Aspect

In Fig. 4(a) we show an example of radiation pattern of a 50 nm width nanowire for TM polarization, obtained by the experimental setup described Fig. 2. The center of the image corresponds to the direction normal to the sample (z axis). The doted circular line corresponds to the limit of the numerical aperture. Vertical direction (x axis) corresponds to the direction parallel to the waveguide and horizontal direction (y axis) to the direction of the nanowire.

Fig. 4. (a) Example of a waveguide-coupled nanowire radiation pattern observed with the setup described Fig. 2. The transverse variation (ky) is essentially linked to the Fourier transform of the guided mode, while the longitudinal variation kx (parallel to the waveguide) varies in a complex manner linked to the nanowire properties (size, shape, material), the field properties (wavelength, polarization), the waveguide depth, and the permittivity of the surrounding media. (b) Radiation pattern divided by its average kx variation, showing a kx and ky independence.

An important property of the radiation pattern, is a quasi-independence of the kx and ky variations. In other words, the bidimensional radiated intensity distribution I(kx,ky) is well approximated by the product of two unidimensional functions Ix(kx) and Iy(ky)
I(kx,ky)Ix(kx)Iy(ky).
(8)

This could be easily demonstrated by dividing the bidimensional variation I(kx,ky) by its average kx variation, showing a result that no longer depends on kx [Fig. 4(b)].

This quasi-kx and ky independence is explained by the geometry of the problem: in the y direction, the nanowire is almost infinite (20μm) as compared with the width of the guided mode (1μm). Moreover, the relative index variation at the level of the waveguide is very low (<1%) and can be neglected when compared to the gold/glass refractive index ratio. In other words, for the study of the scattering properties, the structure is well approximated by a structure invariant in the y direction, illuminated by a field varying in the y direction, according to the guided mode. With this assumption, we expect the ky variation of the radiation pattern E(ky) to be simply the linear superposition of plane waves, resulting from the E(y) field distribution above the waveguide:
E(kx,ky)=12π+E(kx,y)exp(ikyy)dy.
(9)

2. Radiation in the Substrate and Superstrate

With our experimental setup (Fig. 2), we only measured the radiation pattern in the superstrate. However, we are able to calculate it in both the superstrate and substrate. Figure 5 shows the kx variation of a calculated radiation pattern in the substrate and superstrate for a 50 nm width and 50 nm height gold nanowire.

Fig. 5. Schematic 2D representation of the waveguide-coupled nanowire, superimposed with a calculated radiation pattern. The distribution of scattered light is bigger in the medium with higher refractive index (substrate).

The main part of the radiated field lies in the medium of higher refractive index [27

27. W. Lukosz and R. Kunz, “Light emission by magnetic and electric dipoles close to a plane dielectric interface. II. Radiation patterns of perpendicular oriented dipoles,” J. Opt. Soc. Am. 67, 1615–1619 (1977). [CrossRef]

]. For our sample configuration, since the core of the waveguide has necessarily a higher refractive index than its cladding, most of the field radiated by the nanowire will be in the direction of the waveguide, which also corresponds to the direction of the substrate. We also observe a more complex shape in the substrate, due to multiple interferences effects.

B. Longitudinal Variation

1. Overview

We have measured the radiation patterns in the superstrate for the 50 nm width and 150 nm width gold nanowires, in TE an TM polarization, and for wavelength in the 450–700 nm range. Our results show that the longitudinal variation of the radiation patterns is full of complex and parameter sensitive information. Only electromagnetic modeling or measurements allow an accurate quantitative description of the pattern. Here we give some qualitative properties and comments, based on our measurements and FMM calculations.

Fig. 6. Radiation patterns of a single waveguide-coupled nanowire at 700 nm. Dotted line: measurements; continuous line: theory. Left side: TM polarization (magnetic field parallel to the nanowire); right side: TE polarization. Top: 50 nm width nanowire; bottom: 150 nm width nanowire. Incident guided wave comes from the left. Amplitude scale on the radial axis concerns calculated data.

Concerning the 50 nm width nanowire, we observe a radiation pattern varying roughly as a cosθ in TE polarization. Such variation corresponds to the radiation pattern of a dipole on an interface [17

17. F. Degirmenci, I. Bulu, P. Deotare, M. Khan, M. Loncar, and F. Capasso, “Waveguide integrated plasmonic platform for sensing and spectroscopy,” Proc. SPIE 7941, 794117 (2011). [CrossRef]

]. At a 700 nm wavelength, for a 50 nm width nanowire, a simple dipole approximation begins to give some useful insights on the situation. Slight oscillations, particularly at grazing angles, are observed in the calculated patterns. These oscillations are not numerical noise but correspond to interference fringes due to multiple reflections in the waveguide. Oscillations observed in the measured radiation pattern are a mix of interference fringes and experimental noise.

In TM polarization, the 50 nm nanowire radiation pattern shows a minimum in the normal direction (θ=0). This behavior can be explained by the fact that, for a small object, the polarization state is essentially maintained by the scattering process. Since in TM polarization the electric field is almost perpendicular to the waveguide top interface and because the field has to be orthogonal to the propagation direction, the scattered intensity is necessarily weak in this direction. It also explains the overall low scattering amplitude for a small nanowire in TM polarization (see amplitude scale on the radial axis). When the size of the scatterer increases, the polarization state is no longer maintained by the scattering process, and the 150 nm width nanowire radiation pattern does not show such local minimum. Moreover it shows a considerably higher integrated scattering intensity (×50 factor). Resonant effects may also be involved at this wavelength. For this 150 nm nanowire, we can notice that the scattered field is oriented in the backward direction in TM polarization, while it is in the forward direction for TE polarization.

Figure 6 also illustrates the good agreement between the measurements and our calculations for the radiation pattern directivity.

2. Effect of Size, Wavelength, and Polarization on the Longitudinal Variation

Figure 7 presents calculated longitudinal variations of radiation patterns in the superstrate for several sizes of nanowire and wavelength and for both polarizations. These figures have the purpose of providing references and illustrate the wide variety of pattern shapes and parameter sensitivity.

Fig. 7. Effects of various parameters on the radiation pattern (simulations). Top: effect of the nanowire width d for a 50 nm height nanowire at a 520 nm wavelength. Middle: effect of the nanowire eight, h, for a 50 nm width nanowire at a 520 nm wavelength. Bottom: effect of the wavelength, λ, for a 50 nm width and 50 nm height nanowire. Right: TM polarization. Left: TE polarization.

Not surprisingly, Figs. 7(a)7(d) show a global increase in the scattering amplitude with the nanowire size. Complex variations, high sensitivity to a change of one parameter and wide variety of shapes are observed in TM polarization, while more regular variations and more regular shapes, except for the waveguide interference oscillations, are observed in TE.

The wavelength dependence, in the spectral range 400–1000 nm, is illustrated on Figs. 7(e) and 7(f). We observe that the radiation pattern reaches a maximal scattering amplitude for 600nm in TM polarization, while in TE polarization the amplitude increases globally with the wavelength.

6. SPECTRAL PROPERTIES AND RESONANCES

A. Scattered Intensity in the Superstrate

If we integrate the radiation pattern intensity [Figs. 7(e) and 7(f)] within the limits of the numerical aperture, ±71.8°, we obtain the integrated radiated intensity as represented on Fig. 8.

Fig. 8. Spectral variations of the integrated radiated intensity in the superstrate for 50 and 150 nm width gold nanowires in TM and TE polarizations. Experimental points are obtained as follows: for each wavelength, a quasi-monochromatic light is coupled in the waveguide, and the radiation pattern is measured, then angularly integrated. The calibration procedure described in Section 3.B is used to correct data from spectral variations from the source and transmission coefficients in the waveguide and fiber. Continuous lines correspond to guided FMM calculations. Vertical scale corresponds to calculations. Each experimental spectrum is multiplied with an arbitrary constant coefficient for visual comparison with calculations.

When the electric field is parallel to the wire (TE) we observe, for 50 and 150 nm wires, a globally increasing scattering efficiency with the wavelength (Fig. 8). Part of the explanation of this behavior comes from the fact that gold becomes more conductive when the wavelength goes in the infrared region [25

25. E. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1998), Vol. 3.

] and thus scatters the light more efficiently. The same kind of behavior is observed for other metals in the same spectral region (Fig. 9). On the other hand, the reduction of the ratio scatterer size/wavelength induces a reduction in the scattering efficiency as illustrated in Fig. 9 for a titanium dioxide nanowire (which refractive index is constant in this region). This reduction effect seems to be overcompensated by the refractive index effect in the case of metals.

Fig. 9. Other materials than gold. Scattering in the superstrate and absorption for TM and TE polarizations.

In TM polarization (electric field perpendicular to the wire), 50 and 150 nm width nanowires show LSPR in the radiated intensity. The position of the 150 nm nanowire LSPR (670nm for experiments and 680nm for simulations) is red shifted compared to the 50 nm nanowire (580nm for experiments and 530nm for simulations). Red shifting of the resonance when size increases is a well-known result [17

17. F. Degirmenci, I. Bulu, P. Deotare, M. Khan, M. Loncar, and F. Capasso, “Waveguide integrated plasmonic platform for sensing and spectroscopy,” Proc. SPIE 7941, 794117 (2011). [CrossRef]

]. For other materials than gold (Fig. 9), LSPR are observed at 450nm for silver and 600nm for copper; other metals do not show any LSPR in the 400–1000 nm spectral range.

For all experimental plots of Fig. 8, oscillations with a noisy aspect can be observed for λ500nm. These oscillations are the results of mode beatings in the waveguide, which becomes single-mode only after roughly 500 nm.

B. Absorption, Materials Dispersion, and Near-Field Distribution

Although the main subject of this paper is the study of the radiated far-field field, we discuss here some other important physical effects in order to have a full figure of the problem.

From the viewpoint of the guided signal, scattering mainly corresponds to losses. The other significant factor of the losses is absorption by the nanowire. In Figs. 9(c) and 9(d), calculated absorption losses are presented for a 50nm×50nm five-waveguide-coupled nanowire for different materials.

Fig. 10. Maps of the electric field amplitude calculated for the wavelength corresponding to the LSP mode resonance of Fig. 8 at a wavelength of 520 nm: (left) TE polarization and (right) TM polarization.

7. CONCLUSION

Coupling a nanowire with a waveguide is one of the simplest ways to locally connect the waveguide with a far-field propagating signal. The radiation pattern resulting from this coupling is quite complex and carries information on the guided signal, such as intensity, polarization, or propagation direction. The radiation pattern shape can be tuned by adjusting the dimensions of the nanowire in order to respond to a given purpose in term of directivity or coupling efficiency. The coupling efficiency is also easily tuned by adjusting the distance between the nanowire and the waveguide.

Gold nanowires clearly show experimental evidence of LSPR effects when the electric field is perpendicular to the wire. These resonances are characterized in the far field by a maximum in the scattering efficiency and in the near field by a strong local field enhancement. Exploitation of these plasmonic effects in a completely integrated way should be possible with these types of components, as long as the coupling between the waveguide and the nanowire is sufficient to ensure a good signal-to-noise ratio at the waveguide output.

ACKNOWLEDGMENTS

We thank Thierry Gonthiez, Denis Barbier, Jumana Boussey, Christophe Bonneville, and Veronica Perez-Chavez for fruitful discussions and exchanges. This work was partially supported by the Fonds Unique Interministériel (FUI) and the Région Champagne Ardennes and is part of the strategic research program on optical standing waves spectrometers and sensors of the Université de Technologie de Troyes (UTT).

REFERENCES

1.

T. Vo-Dinh, “Biosensors, nanosensors and biochips: frontiers in environmental and medical diagnostics,” in Proceedings of the 1st International Symposium on Micro & Nano Technology, Hawaii (2004), pp. 14–17.

2.

K. Strelau, R. Kretschmer, R. Möller, W. Fritzsche, and J. Popp, “SERS as tool for the analysis of DNA-chips in a microfluidic platform,” Anal. Bioanal. Chem. 396, 1381–1384 (2010). [CrossRef]

3.

C. Delacour, S. Blaize, P. Grosse, J. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett. 10, 2922–2926 (2010). [CrossRef]

4.

A. Akimov, A. Mukherjee, C. Yu, D. Chang, A. Zibrov, P. Hemmer, H. Park, and M. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007). [CrossRef]

5.

A. Politi, M. Cryan, J. Rarity, S. Yu, and J. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008). [CrossRef]

6.

M. Paulus and O. Martin, “How to tap an innocent waveguide,” Opt. Express 8, 644–648 (2001). [CrossRef]

7.

J. Wen, S. Romanov, and U. Peschel, “Excitation of plasmonic gap waveguides by nanoantennas,” Opt. Express 17, 5925–5932 (2009). [CrossRef]

8.

J. Li and N. Engheta, “Core-shell nanowire optical antennas fed by slab waveguides,” IEEE Trans. Antennas Propag. 55, 3018–3026 (2007). [CrossRef]

9.

W. Ewe, H. Chu, E. Li, and B. Luk’yanchuk, “Field enhancement of gold optical nanoantennas mounted on a dielectric waveguide,” Appl. Phys. A 100, 315–319 (2010). [CrossRef]

10.

E. Cubukcu, E. Kort, K. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89, 093120 (2006). [CrossRef]

11.

H. Hattori, Z. Li, and D. Liu, “Driving plasmonic nanoantennas with triangular lasers and slot waveguides,” Appl. Opt. 50, 2391–2400 (2011). [CrossRef]

12.

A. Alù and N. Engheta, “Wireless at the nanoscale: optical interconnects using matched nanoantennas,” Phys. Rev. Lett. 104, 213902 (2010). [CrossRef]

13.

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1, 473–478 (2007). [CrossRef]

14.

J. Ferrand, G. Custillon, G. Leblond, F. Thomas, T. Moulin, E. Le Coarer, A. Morand, S. Blaize, T. Gonthiez, and P. Benech, “Stationary wave integrated Fourier transform spectrometer (swifts),” Proc. SPIE 7604, 760414 (2010). [CrossRef]

15.

K. Kim, S. Yoon, and D. Kim, “Nanowire-based enhancement of localized surface plasmon resonance for highly sensitive detection: a theoretical study,” Opt. Express 14, 12419–12431 (2006). [CrossRef]

16.

MONA, “A European roadmap for photonics and nanotechnologies,” 2008, http://www.ist-mona.org/.

17.

F. Degirmenci, I. Bulu, P. Deotare, M. Khan, M. Loncar, and F. Capasso, “Waveguide integrated plasmonic platform for sensing and spectroscopy,” Proc. SPIE 7941, 794117 (2011). [CrossRef]

18.

M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100, 186804 (2008). [CrossRef]

19.

L. Novotny, R. Bian, and X. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997). [CrossRef]

20.

P. Lalanne and E. Silberstein, “Fourier-modal methods applied to waveguide computational problems,” Opt. Lett. 25, 1092–1094 (2000). [CrossRef]

21.

J. Broquin, “Glass integrated optics: state of the art and position toward other technologies,” Proc. SPIE 6475, 647507 (2007). [CrossRef]

22.

A. Tervonen, B. West, and S. Honkanen, “Ion-exchanged glass waveguide technology: a review,” Opt. Eng. 50, 071107 (2011). [CrossRef]

23.

M. Moharam, E. Grann, D. Pommet, and T. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995). [CrossRef]

24.

M. Neviere and E. Popov, Light Propagation in Periodic Media: Differential Theory and Design (Marcel Dekker, 2003).

25.

E. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1998), Vol. 3.

26.

A. Vial and T. Laroche, “Description of dispersion properties of metals by means of the critical points model and application to the study of resonant structures using the FDTD method,” J. Phys. D 40, 7152 (2007). [CrossRef]

27.

W. Lukosz and R. Kunz, “Light emission by magnetic and electric dipoles close to a plane dielectric interface. II. Radiation patterns of perpendicular oriented dipoles,” J. Opt. Soc. Am. 67, 1615–1619 (1977). [CrossRef]

28.

B. Ross and L. Lee, “Comparison of near-and far-field measures for plasmon resonance of metallic nanoparticles,” Opt. Lett. 34, 896–898 (2009). [CrossRef]

29.

M. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68, 115433 (2003). [CrossRef]

30.

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]

31.

H. Wang, F. Tam, N. Grady, and N. Halas, “Cu nanoshells: effects of interband transitions on the nanoparticle plasmon resonance,” J. Phys. Chem. B 109, 18218–18222 (2005). [CrossRef]

32.

P. Taneja, P. Ayyub, and R. Chandra, “Size dependence of the optical spectrum in nanocrystalline silver,” Phys. Rev. B 65, 245412 (2002). [CrossRef]

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(130.6010) Integrated optics : Sensors
(130.2755) Integrated optics : Glass waveguides

ToC Category:
Integrated Optics

History
Original Manuscript: July 8, 2013
Manuscript Accepted: August 16, 2013
Published: October 24, 2013

Virtual Issues
October 22, 2013 Spotlight on Optics

Citation
Laurent Arnaud, Aurélien Bruyant, Mikael Renault, Yassine Hadjar, Rafael Salas-Montiel, Aniello Apuzzo, Gilles Lérondel, Alain Morand, Pierre Benech, Etienne Le Coarer, and Sylvain Blaize, "Waveguide-coupled nanowire as an optical antenna," J. Opt. Soc. Am. A 30, 2347-2355 (2013)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-30-11-2347


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Vo-Dinh, “Biosensors, nanosensors and biochips: frontiers in environmental and medical diagnostics,” in Proceedings of the 1st International Symposium on Micro & Nano Technology, Hawaii (2004), pp. 14–17.
  2. K. Strelau, R. Kretschmer, R. Möller, W. Fritzsche, and J. Popp, “SERS as tool for the analysis of DNA-chips in a microfluidic platform,” Anal. Bioanal. Chem. 396, 1381–1384 (2010). [CrossRef]
  3. C. Delacour, S. Blaize, P. Grosse, J. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett. 10, 2922–2926 (2010). [CrossRef]
  4. A. Akimov, A. Mukherjee, C. Yu, D. Chang, A. Zibrov, P. Hemmer, H. Park, and M. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007). [CrossRef]
  5. A. Politi, M. Cryan, J. Rarity, S. Yu, and J. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008). [CrossRef]
  6. M. Paulus and O. Martin, “How to tap an innocent waveguide,” Opt. Express 8, 644–648 (2001). [CrossRef]
  7. J. Wen, S. Romanov, and U. Peschel, “Excitation of plasmonic gap waveguides by nanoantennas,” Opt. Express 17, 5925–5932 (2009). [CrossRef]
  8. J. Li and N. Engheta, “Core-shell nanowire optical antennas fed by slab waveguides,” IEEE Trans. Antennas Propag. 55, 3018–3026 (2007). [CrossRef]
  9. W. Ewe, H. Chu, E. Li, and B. Luk’yanchuk, “Field enhancement of gold optical nanoantennas mounted on a dielectric waveguide,” Appl. Phys. A 100, 315–319 (2010). [CrossRef]
  10. E. Cubukcu, E. Kort, K. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89, 093120 (2006). [CrossRef]
  11. H. Hattori, Z. Li, and D. Liu, “Driving plasmonic nanoantennas with triangular lasers and slot waveguides,” Appl. Opt. 50, 2391–2400 (2011). [CrossRef]
  12. A. Alù and N. Engheta, “Wireless at the nanoscale: optical interconnects using matched nanoantennas,” Phys. Rev. Lett. 104, 213902 (2010). [CrossRef]
  13. E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1, 473–478 (2007). [CrossRef]
  14. J. Ferrand, G. Custillon, G. Leblond, F. Thomas, T. Moulin, E. Le Coarer, A. Morand, S. Blaize, T. Gonthiez, and P. Benech, “Stationary wave integrated Fourier transform spectrometer (swifts),” Proc. SPIE 7604, 760414 (2010). [CrossRef]
  15. K. Kim, S. Yoon, and D. Kim, “Nanowire-based enhancement of localized surface plasmon resonance for highly sensitive detection: a theoretical study,” Opt. Express 14, 12419–12431 (2006). [CrossRef]
  16. MONA, “A European roadmap for photonics and nanotechnologies,” 2008, http://www.ist-mona.org/ .
  17. F. Degirmenci, I. Bulu, P. Deotare, M. Khan, M. Loncar, and F. Capasso, “Waveguide integrated plasmonic platform for sensing and spectroscopy,” Proc. SPIE 7941, 794117 (2011). [CrossRef]
  18. M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100, 186804 (2008). [CrossRef]
  19. L. Novotny, R. Bian, and X. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997). [CrossRef]
  20. P. Lalanne and E. Silberstein, “Fourier-modal methods applied to waveguide computational problems,” Opt. Lett. 25, 1092–1094 (2000). [CrossRef]
  21. J. Broquin, “Glass integrated optics: state of the art and position toward other technologies,” Proc. SPIE 6475, 647507 (2007). [CrossRef]
  22. A. Tervonen, B. West, and S. Honkanen, “Ion-exchanged glass waveguide technology: a review,” Opt. Eng. 50, 071107 (2011). [CrossRef]
  23. M. Moharam, E. Grann, D. Pommet, and T. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995). [CrossRef]
  24. M. Neviere and E. Popov, Light Propagation in Periodic Media: Differential Theory and Design (Marcel Dekker, 2003).
  25. E. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1998), Vol. 3.
  26. A. Vial and T. Laroche, “Description of dispersion properties of metals by means of the critical points model and application to the study of resonant structures using the FDTD method,” J. Phys. D 40, 7152 (2007). [CrossRef]
  27. W. Lukosz and R. Kunz, “Light emission by magnetic and electric dipoles close to a plane dielectric interface. II. Radiation patterns of perpendicular oriented dipoles,” J. Opt. Soc. Am. 67, 1615–1619 (1977). [CrossRef]
  28. B. Ross and L. Lee, “Comparison of near-and far-field measures for plasmon resonance of metallic nanoparticles,” Opt. Lett. 34, 896–898 (2009). [CrossRef]
  29. M. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68, 115433 (2003). [CrossRef]
  30. P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  31. H. Wang, F. Tam, N. Grady, and N. Halas, “Cu nanoshells: effects of interband transitions on the nanoparticle plasmon resonance,” J. Phys. Chem. B 109, 18218–18222 (2005). [CrossRef]
  32. P. Taneja, P. Ayyub, and R. Chandra, “Size dependence of the optical spectrum in nanocrystalline silver,” Phys. Rev. B 65, 245412 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited