Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Self-aligned dual-beam optical laser trap using photorefractive phase conjugation

Not Accessible

Your library or personal account may give you access

Abstract

We report what is to our knowledge the first experimental demonstration and theoretical analysis of an optical laser trap that uses a pair of mutually phase-conjugate beams. A primary trapping beam derived from an argon laser (514.5 nm) together with its counterpropagating phase-conjugate beam creates a self-aligned dual-beam laser trap that provides stable three-dimensional confinement for micrometer-sized dielectric particles. The transverse trapping efficiency, experimentally measured for low-numerical-aperture (N.A. 0.40–0.85) objective lenses, is found to be comparable with that produced by a single-beam gradient force trap. A theoretical analysis, which compares the performance of the self-aligned dual-beam trap against that of single-beam gradient force and conventional counterpropagating dual-beam laser traps, shows that phase-conjugate trapping provides a slight improvement in axial trapping efficiency over the other trapping geometries. The advantages of combining laser trapping with photorefractive optical phase conjugation for simultaneous sample micromanipulation and optical image processing are discussed.

© 1997 Optical Society of America

Full Article  |  PDF Article
More Like This
Trapping forces in a multiple-beam fiber-optic trap

Erkin Sidick, Scott D. Collins, and André Knoesen
Appl. Opt. 36(25) 6423-6433 (1997)

Dynamic multiple-beam counter-propagating optical traps using optical phase-conjugation

Mike Woerdemann, Konrad Berghoff, and Cornelia Denz
Opt. Express 18(21) 22348-22357 (2010)

Self-bending of light beams in photorefractive phase conjugators

V. V. Eliseev, A. A. Zozulya, G. D. Bacher, and Jack Feinberg
J. Opt. Soc. Am. B 9(3) 398-404 (1992)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (14)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved