Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Quantum theory of nondegenerate multiwave mixing: effect of pump phase fluctuations

Not Accessible

Your library or personal account may give you access

Abstract

We extend the quantum theory of nondegenerate four-wave mixing by including the effects of the finite bandwidth of the driving-pump field. The interaction of a beam of two-level atoms with the two opposite driving-pump fields that have finite bandwidth inside a bimodal cavity is considered. The master equation for the cavity-field modes, averaged over the stochastic process, is derived. We use our theory to study the effects of phase fluctuations, associated with the driving-pump field, on the generation of two-mode squeezing inside the cavity. The steady-state squeezing is achieved with the same driving-pump field as a local oscillator in the balanced homodyne-detection system. Our results show that, in spite of instantaneous phase locking between the cavity field and the local oscillator, the time-delay effects associated with the exponential decay of atomic coherence relate the steady-state squeezing to the diffusion constant of the driving-pump field.

© 1997 Optical Society of America

Full Article  |  PDF Article
More Like This
Quantum theory of nondegenerate multiwave mixing. III. Application to single-beam squeezed-state generation

Seng-Tiong Ho, Prem Kumar, and Jeffrey H. Shapiro
J. Opt. Soc. Am. B 8(1) 37-57 (1991)

Quantum theory of multiwave mixing. IV. Effects of cavities on the spectrum of resonance fluorescence

David A. Holm, Murray Sargent, and Stig Stenholm
J. Opt. Soc. Am. B 2(9) 1456-1463 (1985)

Quantum theory of multiwave mixing. VI. Effects of quantum noise on modulation spectroscopy

David A. Holm and Murray Sargent
J. Opt. Soc. Am. B 3(5) 732-740 (1986)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (67)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved