OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 15, Iss. 11 — Nov. 1, 1998
  • pp: 2706–2711

Visible photoluminescence from planar amorphous silicon nitride microcavities

A. Serpengüzel, A. Aydinli, A. Bek, and M. Güre  »View Author Affiliations

JOSA B, Vol. 15, Issue 11, pp. 2706-2711 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (213 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Fabry–Perot microcavities were used for the enhancement and inhibition of photoluminescence (PL) in a hydrogenated amorphous silicon nitride (a-SiNx:H) microcavity fabricated with and without ammonia. A planar microcavity was realized that included a metallic back mirror and an a-SiNx:H–air or a metallic front mirror. The PL extends from the red part of the spectrum to the near infrared for the samples grown without ammonia. The PL is in the blue-green part of the spectrum for the samples grown with ammonia. The PL amplitude is enhanced and the PL linewidth is reduced with respect to those in bulk a-SiNx:H. The numerically calculated transmittance, reflectance, and absorbance spectra agree well with the experimentally measured spectra.

© 1998 Optical Society of America

OCIS Codes
(230.5750) Optical devices : Resonators
(250.5230) Optoelectronics : Photoluminescence
(310.0310) Thin films : Thin films

A. Serpengüzel, A. Aydinli, A. Bek, and M. Güre, "Visible photoluminescence from planar amorphous silicon nitride microcavities," J. Opt. Soc. Am. B 15, 2706-2711 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. M. Agarwal, L. Liao, J. S. Foresi, M. R. Black, X. Duan, and L. C. Kimerling, “Low-loss polycrystalline silicon waveguides for silicon photonics,” J. Appl. Phys. 80, 6120 (1996). [CrossRef]
  2. C. Gorecki, F. Chollet, E. Bonnonte, and H. Kawakatsu, “Silicon-based integrated interferometer with phase modulation driven by surface acoustic waves,” Opt. Lett. 22, 1784 (1997). [CrossRef]
  3. D. J. Lockwood, “Optical properties of porous silicon,” Solid State Commun. 92, 101 (1994). [CrossRef]
  4. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57, 1046 (1990). [CrossRef]
  5. P. C. Sercel, D. Kwon, T. Vilbrandt, W. Yang, J. Hautala, J. D. Cohen, and H. Lee, “Visible electroluminescence from porous silicon/hydrogenated amorphous silicon pn-heterojunction devices,” Appl. Phys. Lett. 68, 684 (1996). [CrossRef]
  6. J. Rarity and C. Weisbuch, eds., Microcavities and Photonic Bandgaps: Physics and Applications (Kluwer, Dordrecht, The Netherlands, 1996).
  7. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  8. F. De Martini, G. Innocenti, G. R. Jacobowitz, and P. Mataloni, “Anomalous spontaneous emission time in a microscopic optical cavity,” Phys. Rev. Lett. 59, 2955 (1987). [CrossRef] [PubMed]
  9. H. Yokoyama and S. D. Brorson, “Rate equation analysis of microcavity lasers,” J. Appl. Phys. 66, 4801 (1989). [CrossRef]
  10. M. S. Ünlü and S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78, 607 (1995). [CrossRef]
  11. E. F. Schubert, Y.-H. Wang, A. Y. Cho, I. W. Tu, and G. J. Zydzik, “Resonant cavity light emitting diode,” Appl. Phys. Lett. 60, 921 (1992). [CrossRef]
  12. H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, “Enhanced spontaneous emission from GaAs quantum wells in monolithic microcavities,” Appl. Phys. Lett. 57, 2814 (1990). [CrossRef]
  13. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289 (1992). [CrossRef]
  14. J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, “Photonic wire lasers,” Phys. Rev. Lett. 75, 2678 (1995). [CrossRef] [PubMed]
  15. L. Pavesi, R. Guardini, and C. Mazolleni, “Porous silicon resonant cavity light emitting diodes,” Solid State Commun. 97, 1051 (1996). [CrossRef]
  16. B. T. Sullivan, D. J. Lockwood, H. J. Labbe, and Z.-H. Lu, “Photoluminescence in amorphous Si/SiOx superlattices fabricated by magnetron sputtering,” Appl. Phys. Lett. 69, 3149 (1996). [CrossRef]
  17. F. N. Timofeev, A. Aydinli, R. Ellialtioglu, K. Türkoglu, M. Güre, V. N. Mikhailov, and O. A. Lavrova, “Visible photoluminescence from SiOx films grown by low temperature plasma enhanced chemical vapor deposition,” Solid State Commun. 95, 443 (1995). [CrossRef]
  18. A. Serpengüzel, A. Aydinli, and A. Bek, “Enhancement and inhibition of photoluminescence in hydrogenated amorphous silicon nitride microcavities,” Opt. Express 1, 108 (1997). [CrossRef]
  19. A. Aydinli, A. Serpengüzel, and D. Vardar, “Visible photoluminescence from low temperature deposited hydrogenated amorphous silicon nitride,” Solid State Commun. 98, 273 (1996). [CrossRef]
  20. M. J. Estes and G. Moddel, “A model of size dependent photoluminescence in amorphous silicon nanostructures: comparison with observations of porous silicon,” Appl. Phys. Lett. 68, 1814 (1996). [CrossRef]
  21. M. H. Brodsky, “Quantum well model of the hydrogenated amorphous silicon,” Solid State Commun. 36, 55 (1980). [CrossRef]
  22. R. Fisher, in Amorphous Semiconductors, M. H. Brodsky, ed. (Springer-Verlag, Berlin, 1985), pp. 159–187.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited