OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 15, Iss. 11 — Nov. 1, 1998
  • pp: 2757–2762

Instability mechanism for bright solitary-wave solutions to the cubic–quintic Ginzburg–Landau equation

Todd Kapitula and Björn Sandstede  »View Author Affiliations

JOSA B, Vol. 15, Issue 11, pp. 2757-2762 (1998)

View Full Text Article

Acrobat PDF (236 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We address the stability of solitary waves to the complex cubic–quintic Ginzburg–Landau equation near the nonlinear Schrödinger limit. It is shown that the adiabatic method does not capture all possible instability mechanisms. The solitary wave can destabilize owing to discrete eigenvalues that move out of the continuous spectrum upon adding nonintegrable perturbations to the nonlinear Schrödinger equation. If an eigenvalue does move out of the continuous spectrum, then we say that an edge bifurcation has occurred. We present a novel analytical technique that allows us to determine whether eigenvalues arise in such a fashion, and if they do, to locate them. Using this approach, we show that Hopf bifurcations can arise in the cubic–quintic Ginzburg–Landau equation.

© 1998 Optical Society of America

OCIS Codes
(190.3100) Nonlinear optics : Instabilities and chaos
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons

Todd Kapitula and Björn Sandstede, "Instability mechanism for bright solitary-wave solutions to the cubic–quintic Ginzburg–Landau equation," J. Opt. Soc. Am. B 15, 2757-2762 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. S. Gatz and J. Herrmann, “Soliton propagation in materials with saturable nonlinearity,” J. Opt. Soc. Am. B 8, 2296–2302 (1991).
  2. S. Gatz and J. Herrmann, “Soliton collision and soliton fusion in dispersive materials with a linear and quadratic intensity depending refraction index change,” IEEE J. Quantum Electron. 28, 1732–1738 (1992).
  3. C. De Angelis, “Self-trapped propagation in the nonlinear cubic–quintic Schrödinger equation: a variational approach,” IEEE J. Quantum Electron. 30, 818–821 (1994).
  4. B. Lawrence, M. Cha, J. Kang, W. Torreullas, G. Stegeman, G. Baker, J. Meth, and S. Etemad, “Large purely refractive nonlinear index of single crystal P-toluene sulphonate (PTS) at 1600 nm,” Electron. Lett. 30, 447–448 (1994).
  5. B. Lawrence, M. Cha, W. Torruellas, G. Stegeman, S. Eternad, G. Baker, and F. Kajzar, “Measurement of the complex nonlinear refractive index of single crystal p-toluene sulfonate at 1064 nm,” Appl. Phys. Lett. 64, 2773–2775 (1994).
  6. S. Gatz and J. Herrmann, “Soliton propagation and soliton collision in double-doped fibers with a non-Kerr-like nonlinear refractive-index change,” Opt. Lett. 17, 484–486 (1992).
  7. J. Herrmann, “Bistable bright solitons in dispersive media with a linear and quadratic intensity-dependent refraction index change,” Opt. Commun. 87, 161–165 (1992).
  8. A. Sombra, “Bistable pulse collisions of the cubic–quintic nonlinear Schrödinger equation,” Opt. Commun. 94, 92–98 (1992).
  9. P. Marcq, H. Chatë, and R. Conte, “Exact solutions of the one-dimensional quintic complex Ginzburg–Landau equation,” Physica D 73, 305–317 (1994).
  10. W. Van Saarloos and P. Hohenberg, “Fronts, pulses, sources, and sinks in the generalized complex Ginzburg–Landau equation,” Physica D 56, 303–367 (1992).
  11. J. Soto-Crespo, N. Akhmediev, and V. Afanasjev, “Stability of the pulselike solutions of the quintic complex Ginzburg–Landau equation,” J. Opt. Soc. Am. B 13, 1439–1449 (1996).
  12. N. Akhmediev and A. Ankiewicz, Solitons: Nonlinear Pulses and Beams (Chapman & Hall, London, 1997).
  13. T. Kapitula, “Stability criterion for bright solitary waves of the perturbed cubic–quintic Schrödinger equation,” Physica D 116, 95–120 (1998).
  14. Y. Kodama, M. Romagnoli, and S. Wabnitz, “Soliton stability and interactions in fibre lasers,” Electron. Lett. 28, 1981–1983 (1992).
  15. D. Pelinovsky, Y. Kivshar, and V. Afanasjev, “Internal modes of envelope solitons,” Physica D 116, 121–142 (1998).
  16. T. Kapitula and B. Sandstede, “Stability of bright solitary wave solutions to perturbed nonlinear Schrödinger equations,” Physica D (to be published).
  17. Y. Kivshar, D. Pelinovsky, T. Cretegny, and M. Peyrand, “Internal modes of solitary waves,” Phys. Rev. Lett. 80, 5032–5035 (1998).
  18. D. Kaup, “Perturbation theory for solitons in optical fibers,” Phys. Rev. A 42, 5689–5694 (1990).
  19. D. Kaup and T. Lakoba, “Variational method: How it can create false instabilities,” J. Math. Phys. 37, 3442–3462 (1996).
  20. V. Afanasjev, P. Chu, and Y. Kivshar, “Breathing spatial solitons in non-Kerr media,” Opt. Lett. 22, 1388–1390 (1997).
  21. A. Champneys, Yu. Kuznetsov, and B. Sandstede, “A numerical toolbox for homoclinic bifurcation analysis,” Int. J. Bifurcation Chaos Appl. Sci. Eng. 6, 867–887 (1996).
  22. E. Doedel, A. Champneys, T. Fairgrieve, Yu. Kuznetsov, B. Sandstede, and X. Wang, “AUTO97: Continuation and bifurcation software for ordinary differential equations (with HomCont),” Technical Report (Concordia University, Montreal, Quebec, Canada, 1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited