OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 15, Iss. 2 — Feb. 1, 1998
  • pp: 740–750

Polymer in-line fiber modulators for broadband radio-frequency optical links

S. A. Hamilton, D. R. Yankelevich, A. Knoesen, R. T. Weverka, R. A. Hill, and G. C. Bjorklund  »View Author Affiliations


JOSA B, Vol. 15, Issue 2, pp. 740-750 (1998)
http://dx.doi.org/10.1364/JOSAB.15.000740


View Full Text Article

Acrobat PDF (677 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a polymer in-line fiber modulator with a rugged and low-loss interface to single-mode fibers that can be engineered to have a bias point that yields linear modulation over a large dynamic range. Two classes of large-bandwidth modulators, each of which benefits from different properties provided by polymers, are demonstrated. A lumped capacitor modulator, which uses a decal deposition technique, and a traveling-wave modulator, which takes advantage of polymer conformal coating and reactive ion etching to accurately trim the thickness of the polymer waveguide, are presented. Because the in-line fiber modulator configuration requires moderate loss to achieve a large dynamic range, an operational wavelength closer to the absorption peak of an electro-optic polymer can be used to exploit the resonant enhancement of electro-optic coefficients.

© 1998 Optical Society of America

OCIS Codes
(060.4080) Fiber optics and optical communications : Modulation
(250.2080) Optoelectronics : Polymer active devices
(250.5460) Optoelectronics : Polymer waveguides
(250.7360) Optoelectronics : Waveguide modulators

Citation
S. A. Hamilton, D. R. Yankelevich, A. Knoesen, R. T. Weverka, R. A. Hill, and G. C. Bjorklund, "Polymer in-line fiber modulators for broadband radio-frequency optical links," J. Opt. Soc. Am. B 15, 740-750 (1998)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-15-2-740


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. E. Ackerman, S. Wanuga, D. Kasemset, A. S. Daryoush, and N. R. Samant, “Maximum dynamic range operation of a microwave external modulation fiber-optic link,” IEEE Trans. Microwave Theory Tech. 41, 1299–1306 (1993).
  2. M. L. Farwell, W. S. C. Chang, and D. R. Huber, “Increased linear dynamic range by low biasing the Mach–Zehnder modulator,” IEEE Photonics Technol. Lett. 5, 779–782 (1993).
  3. J. H. Schaffner, J. F. Lam, C. J. Gaeta, G. L. Tangonan, R. L. Joyce, M. L. Farwell, and W. S. C. Chang, “Spur-free dynamic range measurements of a fiber optic link with traveling wave linearized directional couplers,” IEEE Photonics Technol. Lett. 6, 273–275 (1994).
  4. W. B. Bridges and J. H. Schaffner, “Distortion in linearized electrooptic modulators,” IEEE Trans. Microwave Theory Tech. 43, 2184–2197 (1995).
  5. K. Noguchi, H. Miyazawa, and O. Mitomi, “75 GHz broadband Ti:LiNbO3 optical modulator with ridge structure,” Electron. Lett. 30, 949–951 (1994).
  6. D. G. Girton, S. L. Kwiatkowski, G. F. Lipscomb, and R. S. Lytel, “20-GHz electro-optic polymer Mach–Zehnder modulator,” Appl. Phys. Lett. 58, 1730–1732 (1991).
  7. C. C. Teng, “Traveling-wave polymeric optical intensity modulator with more than 40 GHz of 3-dB electrical bandwidth,” Appl. Phys. Lett. 60, 1538–1540 (1992).
  8. W. Wang, D. Chen, H. R. Fetterman, Y. Shi, W. H. Steier, and L. R. Dalton, “Traveling-wave electro-optic phase modulator using cross-linked nonlinear optical polymer,” Appl. Phys. Lett. 65, 929–931 (1994).
  9. Y. Shuto, S. Tomaru, M. Hikita, and M. Amano, “Optical intensity modulators using diazo-dye-substituted polymer channel waveguides,” IEEE J. Quantum Electron. 31, 1451–1460 (1995).
  10. A. Skumanich, M. Jurich, and J. D. Swalen, “Absorption and scattering in nonlinear optical polymeric systems,” Appl. Phys. Lett. 62, 446–448 (1993).
  11. R. A. Bergh, G. Kotler, and H. J. Shaw, “Single-mode fibre optic directional coupler,” Electron. Lett. 16, 260–261 (1980).
  12. S.-M. Tseng and C.-L. Chen, “Side-polished fibers,” Appl. Opt. 31, 3438–3447 (1992).
  13. M. Zhang and E. Garmire, “Single-mode fiber-film directional coupler,” J. Lightwave Technol. LT-5, 260–267 (1987).
  14. W. Johnstone, G. Stewart, T. Hart, and B. Culshaw, “Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices,” J. Lightwave Technol. 8, 538–544 (1990).
  15. A. K. Das and A. K. Ganguly, “Efficient method of coupling from a single-mode fiber to a thin-film waveguide,” Opt. Lett. 19, 2110–2112 (1994).
  16. D. Flannery, S. W. James, R. P. Tatam, and G. J. Ashwell, “pH sensor using Langmuir–Blodgett overlays on polished optical fibers,” Opt. Lett. 22, 567–569 (1997).
  17. S. G. Lee, J. P. Sokoloff, B. P. McGinnis, and H. Sasabe, “Fabrication of a side-polished fiber polarizer with a birefringent polymer overlay,” Opt. Lett. 22, 606–608 (1997).
  18. D. Marcuse, “Investigation of coupling between a fiber and an infinite slab,” J. Lightwave Technol. 7, 122–130 (1989).
  19. A. T. Andreev and K. P. Panajotov, “Distributed single-mode fiber to single-mode planar waveguide coupler,” J. Lightwave Technol. 11, 1985–1989 (1993).
  20. K. Panajotov, “Polarization properties of a fiber-to-asymmetric planar waveguide coupler,” J. Lightwave Technol. 12, 983–988 (1994).
  21. A. T. Andreev, K. Panajotov, and E. I. Karakoleva, “Wavelength division action of a distributed single-mode fiber-to-symmetrical planar waveguide coupler,” IEEE Photonics Technol. Lett. 6, 1238–1240 (1994).
  22. A. Andreev, B. Zafirova, K. Panajotov, and I. Koprinarova, “Experimental investigation of the influence of the refractive index of the intermediate planar layer on the properties of a polished type single-mode fibre coupler,” J. Mod. Opt. 43, 1111–1125 (1996).
  23. K. P. Panajotov and A. T. Andreev, “Distributed coupling between a single-mode fiber and a planar waveguide,” J. Opt. Soc. Am. B 11, 826–834 (1997).
  24. A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. QE-9, 919–933 (1973).
  25. Refer to various papers in Technical Program for the Sixth Annual ARPA Symposium on Photonic Systems for Antenna Applications (Advanced Research Projects Agency, Monterey, Calif., 1996).
  26. M. Wilkinson, J. R. Hill, and S. A. Cassidy, “Optical fibre modulator using electro-optic polymer overlayer,” Electron. Lett. 27, 979–981 (1991).
  27. G. Fawcett, W. Johnstone, and I. Andonovic, “Fibre optic intensity modulator using multi-mode electro-optic polymer overlay,” in Components for Fiber Optic Applications VII, P. M. Kopera, ed., Proc. SPIE 1792, 132–136 (1992).
  28. G. Fawcett, W. Johnstone, I. Andonovic, D. J. Bone, T. G. Harvey, N. Carter, and T. G. Ryan, “In-line fibre-optic intensity modulator using electro-optic polymer,” Electron. Lett. 28, 985–986 (1992).
  29. R. A. Hill, G. C. Bjorklund, S. A. Hamilton, D. R. Yankelevich, and A. Knoesen, “Low-distortion, high-speed polymeric in-line fiber modulator,” in Conference on Lasers and Electro-Optics, Vol. 10 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 332–333.
  30. R. A. Hill, G. C. Bjorklund, S. A. Hamilton, D. R. Yankelevich, and A. Knoesen, “Polymeric in-line fiber modulator using novel processing techniques,” in Optical Fiber Communication, Vol. 2 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 166–167.
  31. Ph. Prêtre, L.-M. Wu, R. A. Hill, and A. Knoesen, “Characterization of electro-optic polymer films by use of decal-deposited reflection Fabry–Perot microcavities,” J. Opt. Soc. Am. B 15, 379–392 (1998).
  32. G. Khanarian, M. A. Mortazavi, and A. J. East, “Phase-matched second-harmonic generation from free-standing periodically stacked polymer films,” Appl. Phys. Lett. 63, 1462–1464 (1993).
  33. D. R. Yankelevich, R. A. Hill, A. Knoesen, M. A. Mortazavi, H. N. Yoon, and S. T. Kowel, “Polymeric modulator for high frequency optical interconnects,” IEEE Photonics Technol. Lett. 6, 386–389 (1994).
  34. S. Creaney, W. Johnstone, and K. McCallion, “Continuous-fiber modulator with high-bandwidth coplanar strip electrodes,” IEEE Photonics Technol. Lett. 8, 355–357 (1996).
  35. A. Otomo, G. I. Stegeman, W. H. G. Horsthuis, and G. R. Möhlmann, “Strong field, in-plane poling for nonlinear optical devices in highly nonlinear side chain polymers,” Appl. Phys. Lett. 65, 2389–2391 (1994).
  36. M. Ahlheim, M. Barzoukas, P. V. Bedworth, M. Blanchard-Desce, A. Fort, Z.-Y. Hu, S. R. Marder, J. W. Perry, C. Runser, M. Staehelin, and B. Zysset, “Chromophores with strong heterocyclic acceptors: a poled polymer with a large electro-optic coefficient,” Science 271, 335–337 (1996).
  37. D. Haas, H. Yoon, H. Man, G. Cross, S. Mann, and P. Nicholas, “Polymeric electro-optic waveguide modulator; materials and fabrication,” in Nonlinear Optical Properties of Organic Materials II, G. Khamarian, ed., Proc. SPIE 1147, 222–232 (1989).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited