OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 15, Iss. 2 — Feb. 1, 1998
  • pp: 759–772

Nonlinear contrawave mixing devices in poled-polymer waveguides

Akira Otomo, George I. Stegeman, Marinus C. Flipse, Mart B. J. Diemeer, Winfried H. G. Horsthuis, and Guus R. Möhlmann  »View Author Affiliations

JOSA B, Vol. 15, Issue 2, pp. 759-772 (1998)

View Full Text Article

Acrobat PDF (610 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigated efficient surface-emitting second-harmonic-generation devices in poled polymers, using a 4-dimethylamino-4<sup>′</sup>-nitrostilbene side-chain polymer. The investigation included characterization of the linear and nonlinear optical properties of the polymer, design of efficient surface-emitting second-harmonic-generation devices based on poled polymers, development of an efficient in-plane poling technique, and demonstration of surface-emitting second-harmonic generation in poled polymers. As a result, strong field in-plane parallel poling was successfully performed with poling fields over 300 V/μm, which led to a large nonlinearity of 150 pm/V at 1064 nm (near resonance). A thick cover layer and a highly resistive substrate were found to be essential for efficient in-plane poling without breakdown at relatively small fields and significant charge injection. We achieved quasi-phase matching in the transverse direction by fabricating nonlinear–linear multilayer waveguides. Each layer had approximately a 150-nm thickness. The largest second-harmonic power conversion efficiency to date in the poled-polymer devices is 0.6%/W cm, which is comparable with those of semiconductor multilayer devices.

© 1998 Optical Society of America

OCIS Codes
(160.5470) Materials : Polymers
(190.0190) Nonlinear optics : Nonlinear optics
(190.2620) Nonlinear optics : Harmonic generation and mixing
(230.7370) Optical devices : Waveguides

Akira Otomo, George I. Stegeman, Marinus C. Flipse, Mart B. J. Diemeer, Winfried H. G. Horsthuis, and Guus R. Möhlmann, "Nonlinear contrawave mixing devices in poled-polymer waveguides," J. Opt. Soc. Am. B 15, 759-772 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984), Chaps. 6 and 7; R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992), Chap. 2.
  2. C. J. van der Poel, J. D. Bierlein, J. B. Brown, and S. Colak, “Efficient type I blue second-harmonic generation in periodically segmented KTiOPO4 waveguides,” Appl. Phys. Lett. 57, 2074–2076 (1990).
  3. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
  4. K. Yamamoto and K. Mizuuchi, “Blue-light generation by frequency doubling of a laser diode in a periodically domain-inverted LiTaO3 waveguide,” IEEE Photonics Technol. Lett. 4, 435–437 (1992).
  5. G. Khanarian and R. A. Norwood, “Efficient quasi phase matched second harmonic generation in a polymer waveguide,” in Nonlinear Optical Properties of Organic Materials III, G. Khanarian, ed., Proc. SPIE 1337, 44–52 (1990).
  6. G. L. J. A. Rikken, C. J. E. Seppen, S. Nijhuis, and E. Staring, “Poled polymer for frequency doubling of diode lasers,” in Nonlinear Optical Properties of Organic Materials III, G. Khanarian, ed., Proc. SPIE 1337, 35–43 (1990).
  7. Ch. Bosshard, M. Flörsheimer, M. Küpfer, and P. Günter, “Cerenkov-type phase-matched second-harmonic generation in DCANP Langmuir–Blodgett film waveguides,” Opt. Commun. 85, 243–253 (1991).
  8. Y. Azumai, I. Seo, and H. Sato, “Enhanced second-harmonic generation with Cerenkov radiation scheme in organic film slab-guide at IR lines,” IEEE J. Quantum Electron. 28, 231–238 (1992).
  9. K. Clays, N. J. Armstrong, and T. L. Penner, “Blue and green Cerenkov-type second-harmonic generation in a polymeric Langmuir–Blodgett waveguide,” J. Opt. Soc. Am. B 10, 886–893 (1993).
  10. R. Normandin and G. I. Stegeman, “Nondegenerate four-wave mixing in integrated optics,” Opt. Lett. 4, 58–59 (1979).
  11. R. Normandin and G. I. Stegeman, “Picosecond signal processing with planar nonlinear integrated optics,” Appl. Phys. Lett. 36, 253–255 (1980).
  12. R. Normandin and G. I. Stegeman, “A picosecond transient digitizer based on nonlinear integrated optics,” Appl. Phys. Lett. 40, 759–761 (1982).
  13. R. Normandin, R. L. Williams, and F. Chatenoud, “Enhanced surface emitting waveguides for visible, monolithic semiconductor laser sources,” Electron. Lett. 26, 2088–2089 (1990); R. Normandin, S. Létourneau, F. Chatenoud, and R. L. Williams, “Monolithic, surface-emitting, semiconductor visible lasers and spectrometers for WDM fiber communication systems,” IEEE J. Quantum Electron. 27, 1520–1530 (1991).
  14. C. T. J. Wreesmann, E. W. P. Erdhuisen, and D. J. Sikkema, “Polyurethanes prepared from non-linear optical active diols,” European patent EP 350112 (10 Jan. 1990); “Non-linear optical active diols and polyurethanes prepared therefrom,” U.S. patent 5001209 (19 March 1991); “Non-linear optical active diols and polyurethanes prepared therefrom,” Canadian patent CA 1332200 (27 Sept. 1994).
  15. P. J. Vella, R. Normandin, and G. I. Stegeman, “Enhanced second-harmonic generation by counter-propagating guided optical waves,” Appl. Phys. Lett. 38, 759–760 (1981).
  16. M. Guy, B. Villeneuve, M. Svilans, M. Têtu, and N. Cyr, “Optical frequency measurement for multichannel networks using sum-frequency generation in multilayer waveguides,” Electron. Lett. 29, 975–976 (1993).
  17. M. Guy, B. Villeneuve, M. Svilans, M. Têtu, and N. Cyr, “Optical frequency control for DWDM networks using sum-frequency generation in multilayer waveguides,” IEEE Photonics Technol. Lett. 6, 453–456 (1994).
  18. K. D. Singer, M. G. Kuzyk, and J. E. Sohn, “Second-order nonlinear-optical processes in orientationally ordered materials: relationship between molecular and macroscopic properties,” J. Opt. Soc. Am. B 4, 968–976 (1987).
  19. M. A. Mortazavi, A. Knoesen, S. T. Kowel, B. G. Higgins, and A. Dienes, “Second-harmonic generation and absorption studies of polymer-dye films oriented by corona-onset poling at elevated temperatures,” J. Opt. Soc. Am. B 6, 733–741 (1989).
  20. W. H. G. Horsthuis, G. R. Möhlmann, and H. W. Mertens, “Nonlinear optical polymers: waveguide devices based on second order effects,” in Nonlinear Guided-Wave Phenomena, Vol. 15 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), paper MD1, pp. 70–73.
  21. J. W. Wu, J. F. Valley, S. Ermer, E. S. Binkley, J. T. Kenney, G. F. Lipscomb, and R. Lytel, “Thermal stability of electro-optic response in poled polyimide systems,” Appl. Phys. Lett. 58, 225–227 (1991).
  22. A. Nahata, J. Shan, J. T. Yardley, and C. Wu, “Electro-optic determination of the nonlinear-optical properties of a covalently functionalized Disperse Red 1 copolymer,” J. Opt. Soc. Am. B 10, 1553–1564 (1993).
  23. A. Nahata, C. Wu, C. Knapp, V. Lu, J. Shan, and J. T. Yardley, “Thermally stable polyester polymers for second-order nonlinear optics,” Appl. Phys. Lett. 64, 3371–3373 (1994).
  24. S. Yitzchaik, G. Berkovic, and V. Krongauz, “Charge injection asymmetry: a new route to strong optical nonlinearity in poled polymers,” J. Appl. Phys. 70, 3949–3951 (1991).
  25. M. Stähelin, C. A. Walsh, D. M. Burland, R. D. Miller, R. J. Twieg, and W. Volksen, “Orientational decay in poled second-order nonlinear optical guest–host polymers: temperature dependence and effects of poling geometry,” J. Appl. Phys. 73, 8471–8479 (1993).
  26. G. R. Möhlmann, W. H. G. Horsthuis, C. P. J. M. van der Vorst, A. McDonach, M. Copeland, C. Duchet, P. Fabre, M. B. J. Diemeer, E. S. Trommel, F. M. M. Suyten, P. Van Daele, E. Van Tomme, and R. Baets, “Recent developments in optically nonlinear polymers and related electro-optic devices,” in Nonlinear Optical Properties of Organic Materials II, G. Khanarian, ed., Proc. SPIE 1147, 245–255 (1989).
  27. A. Skumanich, M. Jurich, and J. D. Swalen, “Absorption and scattering in nonlinear optical polymeric systems,” Appl. Phys. Lett. 62, 446–448 (1993).
  28. M. Abramowitz and I. E. Stegun, eds., Handbook of Mathematical Functions (U.S. Government Printing Office, Washington, D.C., 1972); E. Toussaere, “Polymeres electrooptiques pour l’optique nonlineaire: caracterisation optique et modeles satistiques,” Ph.D. dissertation (University of Paris, Paris, 1993).
  29. A. Otomo, “Second order optical nonlinearities and wave mixing devices in poled polymer waveguides,” Ph.D. dissertation (University of Central Florida, Orlando, Fla., 1995).
  30. B. J. Orr and J. F. Ward, “Perturbation theory of the nonlinear optical polarization of an isolated system,” Mol. Phys. 20, 513–526 (1971).
  31. C. J. F. Böttcher, Theory of Electric Polarization, 2nd ed. (Elsevier, Amsterdam, 1973), Vol. 1, Chap. 5.
  32. P. M. Lindquist, S. Yitzchaik, T. Zhang, D. R. Kanis, M. A. Ratner, T. J. Marks, and G. K. Wong, “Dispersion of second-order optical nonlinearity in chromophoric self-assembled films by optical parametric amplification: experiment and theory,” Appl. Phys. Lett. 64, 2194–2196 (1994).
  33. M. Cha, “Third order nonlinear optical spectroscopy of organic materials,” Ph.D. dissertation (University of Central Florida, Orlando, Fla., 1993).
  34. K. B. Rochford, R. Zanoni, Q. Gong, and G. I. Stegeman, “Fabrication of integrated optical structures in polydiacetylene films by irreversible photoinduced bleaching,” Appl. Phys. Lett. 55, 1161–1163 (1989).
  35. M. B. J. Diemeer, F. M. M. Suyten, E. S. Trommel, A. McDonach, J. M. Copeland, L. W. Jenneskens, and W. H. G. Horsthuis, “Photoinduced channel waveguide formation in nonlinear optical polymers,” Electron. Lett. 26, 379–380 (1990).
  36. A. Otomo, “Design and fabrication of channel waveguides in a 4-dimethylamino-4-nitrostilbene side chain polymer,” M.S. thesis (University of Central Florida, Orlando, Fla., 1993); A. Otomo, G. I. Stegeman, W. Horsthuis, and G. Möhlmann, “Second harmonic generation by counter-directed guided waves in poled polymer waveguides,” in Polymers for Second-Order Nonlinear Optics, G. A. Lindsay and K. D. Singer, eds., ACS Symp. Ser. 601, 469–483 (1995).
  37. J. Ma, S. Lin, W. Feng, R. J. Feuerstein, B. Hooker, and A. R. Mickelson, “Modeling photobleached optical polymer waveguides,” Appl. Opt. 34, 5352–5360 (1995).
  38. J. I. Thackara, J. C. Chon, G. C. Bjorklund, W. Volksen, and D. M. Burland, “Polymeric electro-optic Mach–Zehnder switches,” Appl. Phys. Lett. 67, 3874–3876 (1995).
  39. A. Otomo, S. M.-Neher, G. I. Stegeman, W. H. G. Horsthuis, and G. R. Möhlmann, “Adiabatic focusing structures in low loss DANS polymer waveguides,” Electron. Lett. 29, 129–130 (1993).
  40. D. Vakhshoori, R. J. Fischer, M. Hong, D. L. Sivco, G. J. Zydzik, G. N. S. Chu, and A. Y. Cho, “Blue–green surface-emitting second-harmonic generators on (111)B GaAs,” Appl. Phys. Lett. 59, 896–898 (1991).
  41. A. Otomo, S. Mittler-Neher, Ch. Bosshard, G. I. Stegeman, W. H. G. Horsthuis, and G. R. Möhlmann, “Second harmonic generation by counter propagating beams in 4-dimethylamino-4-nitrostilbene side-chain polymer channel waveguides,” Appl. Phys. Lett. 63, 3405–3407 (1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited