OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 15, Iss. 2 — Feb. 1, 1998
  • pp: 789–801

Efficient two-photon-induced fluorescence in a new organic crystal

Germain Puccetti, Simon G. Bott, and Roger M. Leblanc  »View Author Affiliations

JOSA B, Vol. 15, Issue 2, pp. 789-801 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (439 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Results are presented on the two-photon absorption and fluorescence properties of a new molecular crystal based on (E)-(E)-4-(p-N,N-dimethylaniline)-1-cyano-1-di(ethoxy)phosphinoylbuta-1,3-diene (DCP). This material shows a two-photon-induced fluorescence when excited in the infrared, in powder 6 times that obtained from a [2-[2-[4-dimethylaminophenyl]ethenyl]-6-methyl-4H-pyron-4-ylidene]propanedinitrile powder excited at 1.064 μm, and 50 times that of a 1-cm-long Rhodamine 640 solution (2 mM in methanol). Pulsed photoacoustic spectroscopy has been used to characterize the two-photon absorption band of the crystalline state. A high two-photon absorption coefficient, β=15 cm/GW, is reported, and an energy-conversion yield of 2.0% (incoherent fluorescence) was obtained in a DCP monocrystal in a single-pass beam configuration. Finally, a correlation is shown between the polarization of the excitation radiation and the crystalline structure of the material.

© 1998 Optical Society of America

OCIS Codes
(110.5120) Imaging systems : Photoacoustic imaging
(260.2510) Physical optics : Fluorescence
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

Germain Puccetti, Simon G. Bott, and Roger M. Leblanc, "Efficient two-photon-induced fluorescence in a new organic crystal," J. Opt. Soc. Am. B 15, 789-801 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. J. Williams, ed., Nonlinear Optical Properties of Organic and Polymeric Molecules and Crystals, ACS Symp. Ser. 233 (1983).
  2. D. S. Chemla and J. Zyss, eds., Nonlinear Optical Properties of Organic Molecules and Crystals (Academic, New York, 1986).
  3. M. G. Kuzyk, J. E. Sohn, and C. W. Dirk, “Mechanisms of quadratic electro-optic modulation of dye-doped polymer systems,” J. Opt. Soc. Am. B 7, 842–858 (1990). [CrossRef]
  4. G. Gabrielli and F. Rustichelli, eds., Proceedings of the Seventh International Conference on Organized Molecular Films, Thin Solid Films 284–285 (1996).
  5. J. Messier, F. Kajzar, and P. Prasad, Organic Molecules for Nonlinear Optics and Photonics, Vol. 194 of NATO ASI Series E, Applied Sciences (North-Holland, Amsterdam, 1990).
  6. J.-F. Nicoud and R. W. Twieg, “Design and synthesis of organic molecular compounds for efficient second harmonic generation,” Ref. 2, Chap. 2.
  7. S. R. Marder, D. N. Beratan, and L.-T. Cheng, “Approaches for optimizing the first electronic hyperpolarisability of conjugated organic molecules,” Science 252, 103–106 (1991). [CrossRef] [PubMed]
  8. D. R. Dai, M. A. Hubbard, J. Parks, T. J. Marks, J. Wang, G. J. Wong, and G. KeLun, “Rational design and construction of polymers with large second order optical nonlinearities. Synthetic strategies for enhanced chromophore number densities and frequency doubling temporal stabilities,” Mol. Cryst. Liq. Cryst. 189, 93–106 (1990).
  9. J. Zyss, J.-F. Nicoud, and M. Coquillay, “Chirality and hydrogen bonding in molecular crystals for phase-matched second-harmonic generation: N-(4-nitrophenyl)-(L)-prolinol (NPP),” J. Chem. Phys. 81, 4160–4167 (1984). [CrossRef]
  10. W. Tam, B. Guerin, J. C. Calabrese, and S. H. Stevenson, “3-methyl-4-methoxy-4-nitrostilbene (MMONS): crystal structure of a highly efficient material for second-harmonic generation,” Chem. Phys. Lett. 154, 93–96 (1989). [CrossRef]
  11. J. Zyss and J. L. Oudar, “Relation between microscopic and macroscopic lowest-order optical nonlinearities of molecular crystals with one- or two-dimensional units,” Phys. Rev. A 26, 2028–2048 (1982). [CrossRef]
  12. J. Zyss, D. S. Chemla, and J. F. Nicoud, “Demonstration of efficient nonlinear optical crystals with vanishing molecular dipole moment: second-harmonic generation in 3-methyl-4-nitropyridine-1-oxide,” J. Chem. Phys. 74, 4800–4811 (1981). [CrossRef]
  13. Z. Y. Ou, S. F. Pereira, E. S. Polzik, and H. J. Kimble, “85% efficiency for cw frequency doubling from 1.08 to 0.54 μm,” Opt. Lett. 17, 640–642 (1992). [CrossRef] [PubMed]
  14. G. Puccetti, A. Perigaud, J. Badan, I. Ledoux, and J. Zyss, “5-Nitrouracil: a transparent and efficient nonlinear organic crystal,” J. Opt. Soc. Am. B 10, 733–744 (1993). [CrossRef]
  15. K. Nakanishi, I. Suemune, Y. Fujii, Y. Kuroda, and M. Yamanashi, “Extremely-low-threshold and high temperature operation in a photopumped ZnSe/ZnSSe blue laser,” Appl. Phys. Lett. 59, 1401–1403 (1991). [CrossRef]
  16. T. Hebert, R. Wannemacher, R. M. MacFarlane, and W. Length, “Blue continuously pumped upconversion lasing in Tm:YLiF4,” Appl. Phys. Lett. 60, 2592–2594 (1992). [CrossRef]
  17. Z.-G. Wang and H.-R. Xia, Molecular and Laser Spectroscopy, Vol. 50 of Springer Series in Chemistry (Springer-Verlag, Berlin, 1991). [CrossRef]
  18. M. D. Levenson, Introduction to Nonlinear Laser Spectroscopy (Academic, New York, 1987).
  19. F. T. Arechi and E. O. Schulz-Dubois, Laser Handbook (North-Holland, Amsterdam, 1972).
  20. V. Nathan, A. H. Guenther, and S. S. Mitra, “Review of multiphoton absorption in crystalline solids,” J. Opt. Soc. Am. B 2, 294–316 (1985). [CrossRef]
  21. B. M. Pierce, “A theoretical analysis of third-order nonlinear optical properties of linear polyenes and benzene,” J. Chem. Phys. 91, 791–811 (1989). [CrossRef]
  22. Z. G. Soos and S. Ramasesha, “Valence bond approach to exact nonlinear optical properties of conjugated systems,” J. Chem. Phys. 90, 1067–1075 (1989). [CrossRef]
  23. J. R. Heflin, Y. M. Cai, and A. F. Garito, “Dispersion measurements of electric-field induced second-harmonic generation and third-harmonic generation in conjugated linear chains,” J. Opt. Soc. Am. B 8, 2132–2147 (1991). [CrossRef]
  24. N. Pfeffer, P. Raimond, F. Charra, and J.-M. Nunzi, “Determination of the two-photon absorption spectrum of a soluble polythiophene,” Chem. Phys. Lett. 201, 357–360 (1993). [CrossRef]
  25. G. S. He, J. Zieba, J. T. Bradshaw, M. R. Kazmierczak, and P. N. Prasad, “Two-photon induced fluorescence behavior of DEANST organic crystal,” Opt. Commun. 104, 102–106 (1993). [CrossRef]
  26. J. C. Murphy, J. W. Machlachlan Spicer, L. C. Aamodt, and B. S. H. Royce, Photoacoustic and Photothermal Phenomena II, Vol. 62 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1989).
  27. S. E. Braslawsky, “Photoacoustic and photothermal methods applied to the study of radiationless deactivation processes in biological systems and in substances of biological interest,” Photochem. Photobiol. 43, 667–675 (1986). [CrossRef]
  28. A. Mandelis and B. S. H. Royce, “Time-domain photoacoustic spectroscopy of solids,” J. Appl. Phys. 50, 4330–4338 (1979). [CrossRef]
  29. C. K. N. Patel and A. C. Tam, “Pulsed photoacoustic spectroscopy of condensed matter,” Rev. Mod. Instrum. 53, 517–550 (1981).
  30. S. E. Braslawsky and G. E. Heibel, “Time-resolved photothermal and photoacoustic methods applied to photoinduced processes in solution,” Chem. Rev. 92, 1381–1410 (1992). [CrossRef]
  31. J.-M. Heritier, and A. E. Siegman, “Picosecond measurements using photoacoustic detection,” IEEE J. Quantum Electron. QE-19, 1551–1557 (1983). [CrossRef]
  32. R. Phillip, P. Sathy, V. P. M. Nampoori, J. Phillip, and C. P. G. Vallabhan, “Characteristics of two-photon absorption in methanol solutions of Rhodamine 6G using laser induced pulsed photoacoustics,” J. Phys. B 25, 155–161 (1992). [CrossRef]
  33. Enraf-Nonius, Inc., MolEN: An Interactive Structure Solution Program (Enraf-Nonius, Delft, The Netherlands, 1990).
  34. G. M. Sheldrick, in Crystallographic Computing, G. M. Sheldrick, C. Kruger, and R. Goddard, eds. (Oxford U. Press, Oxford, 1985), pp. 184–189.
  35. G. Puccetti and R. M. Leblanc, “A comparative study on chromophore diffusion inside porous filters by pulsed photoacoustic spectroscopy,” J. Membr. Sci. (to be published).
  36. F. Lahjomri, G. Puccetti, R. M. Leblanc, V. Allard, and A. Denis, “Photoacoustic study of the diffusion of chromophores in human skin,” Photochem. Photobiol. 65, 292–302 (1997). [CrossRef] [PubMed]
  37. G. Mignani, G. Soula, and R. Meyrueix, “Nonlinear optical organic compounds and electrooptical devices containing them,” French patent FR 2,636,441 (Cl. G02F1/35; March 16, 1990).
  38. P. W. Atkins, Physical Chemistry, 4th ed. (Oxford U. Press, Oxford, 1990).
  39. A. Mukherjee, “Two-photon pumped upconverted lasing in dye doped polymer waveguides,” Appl. Phys. Lett. 62, 3423–3425 (1993). [CrossRef]
  40. F. Boss, “Versatile high-power single-longitudinal-mode pulsed dye laser,” Appl. Opt. 20, 1886–1890 (1981). [CrossRef]
  41. G. S. He, C. F. Zhao, J. D. Bawhalkar, and P. N. Prasad, “Two-photon pumped cavity lasing in novel dye doped bulk matrix rod,” Appl. Phys. Lett. 67, 3703–3705 (1995). [CrossRef]
  42. J. D. Bhawalkar, G. S. He, C.-K. Park, C. F. Zhao, G. Ruland, and P. N. Prasad, “Efficient, two-photon pumped green upconverted cavity lasing in a new dye,” Opt. Commun. 12, 33–37 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited