OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 15, Iss. 4 — Apr. 1, 1998
  • pp: 1295–1304

Optical gain in (Zn, Cd)Se–Zn(S, Se) quantum wells

F. P. Logue, P. Rees, J. F. Heffernan, C. Jordan, J. F. Donegan, J. Hegarty, F. Hiei, S. Taniguchi, T. Hino, K. Nakano, and A. Ishibashi  »View Author Affiliations


JOSA B, Vol. 15, Issue 4, pp. 1295-1304 (1998)
http://dx.doi.org/10.1364/JOSAB.15.001295


View Full Text Article

Acrobat PDF (273 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have investigated the mechanism of stimulated emission in ZnCdSe–ZnSSe quantum wells through optically pumped measurements of the gain spectrum in a variety of structures from 270 to 77 K. We also calculated the optical gain, using a model that includes many-body effects, and found excellent agreement between the calculated gain line shapes and our measurements. Under the conditions studied, which are close to those found in an operating laser diode, we conclude that the stimulated emission arises from an electron–hole plasma in our samples, even down to 77 K. Although our measurements do not rule out exciton gain mechanisms at other temperatures or operating conditions, sensitive line-shape fitting does not require them in our case. However, our line-shape analysis does show that Coulomb enhancement is significant, even at room temperature.

© 1998 Optical Society of America

OCIS Codes
(140.3380) Lasers and laser optics : Laser materials
(160.6000) Materials : Semiconductor materials
(300.6470) Spectroscopy : Spectroscopy, semiconductors

Citation
F. P. Logue, P. Rees, J. F. Heffernan, C. Jordan, J. F. Donegan, J. Hegarty, F. Hiei, S. Taniguchi, T. Hino, K. Nakano, and A. Ishibashi, "Optical gain in (Zn, Cd)Se–Zn(S, Se) quantum wells," J. Opt. Soc. Am. B 15, 1295-1304 (1998)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-15-4-1295


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. H. Okuyama, E. Kato, S. Itoh, N. Nakayama, T. Ohata, and A. Ishibashi, “Operation and dynamics of ZnSe/ZnMgSSe double heterostructure blue laser diode at room temperature,” Appl. Phys. Lett. 66, 656–658 (1995).
  2. C. Klingshirn, “Properties of the electron–hole plasma in II–VI semiconductors,” J. Cryst. Growth 117, 753–756 (1992).
  3. J. Ding, M. Hagerott, T. Ishihara, H. Jeon, and A. V. Nurmikko, “(Zn, Cd)Se/ZnSe quantum-well lasers: excitonic gain in an inhomogeneously broadened quasi-two-dimensional system,” Phys. Rev. B 47, 10, 528–10, 542 (1993).
  4. Y. Kawakami, I. Hauksson, H. Stewart, J. Simpson, I. Galbraith, K. A. Prior, and B. C. Cavenett, “Exciton-related lasing mechanism in ZnSe-(Zn, Cd)Se multiple quantum wells,” Phys. Rev. B 48, 11, 994–12, 000 (1993).
  5. R. Cingolani, L. Calcagnile, G. Colí, R. Rinaldi, M. Lomascolo, M. DiDio, A. Franciosi, L. Vanzetti, G. C. LaRocca, and D. Campi, “Radiative recombination processes in wide-band-gap II–VI quantum wells: the interplay between excitons and free carriers,” J. Opt. Soc. Am. B 13, 1268–1277 (1996).
  6. M. Umlauff, H. Kalt, C. Klingshirn, M. Scholl, J. Söllner, and M. Heuken, “Laser processes and optical nonlinearities in ZnSe heterostructures,” Phys. Rev. B 52, 5063–5069 (1995).
  7. P. R. Newbury, K. Shazad, and D. A. Cammack, “Stimulated emission via inelastic exciton–exciton scattering in ZnSe epilayers,” Appl. Phys. Lett. 58, 1065–1067 (1991).
  8. Y. Kuroda, I. Suemune, Y. Gujii, and M. Fujimoto, “Blue-light stimulated emission from a localized state formed by well-barrier fluctuation in a II–VI semiconductor superlattice,” Appl. Phys. Lett. 61, 1182–1184 (1992).
  9. F. Kreller, M. Löwisch, J. Puls, and F. Henneberger, “The role of bi-excitons in the stimulated emission of wide-gap II–VI quantum wells,” Phys. Rev. Lett. 75, 2420–2423 (1995).
  10. H. Haug and S. W. Koch, “Semiconductor laser theory with many-body effects,” Phys. Rev. A 39, 1887–1898 (1989).
  11. W. W. Chow, P. M. Smowton, P. Blood, A. Girndt, F. Jahnke, and S. W. Koch, “Comparison of experimental and theoretical GaInP quantum well gain spectra,” Appl. Phys. Lett. 71, 157–159 (1997).
  12. S. Taniguchi, T. Hino, S. Itoh, K. Nakano, N. Nakano, A. Ishibashi, and M. Ikeda, “100h blue-green laser diode,” Electron. Lett. 32, 552–553 (1996).
  13. W. T. Silfvast and J. S. Deech, “Six dB/cm single-pass gain at 7229 Å in lead vapor,” Appl. Phys. Lett. 11, 97–99 (1967).
  14. K. L. Shaklee, R. E. Nahory, and R. F. Leheny, “Optical gain in semiconductors,” J. Lumin. 7, 284–309 (1973).
  15. S. T. Kim, H. Amano, I. Akasaki, and N. Koide, “Optical gain of optically pumped Al0.1Ga0.9N/GaN double heterostructure at room temperature,” Appl. Phys. Lett. 64, 1535–1536 (1994).
  16. G. Fuchs, J. Hörer, A. Hangleiter, V. Härle, F. Scholz, R. W. Glew, and L. Goldstein, “Intervalence band absorption in strained and unstrained InGaAs multiple quantum well structures,” Appl. Phys. Lett. 60, 231–233 (1992).
  17. A. Moritz and A. Hangleiter, “Optical gain in ordered GaInP/AlGaInP quantum wells,” Appl. Phys. Lett. 66, 3340–3342 (1995).
  18. P. S. Cross and W. G. Oldham, “Monolithic measurement of optical gain and absorption in PbTe,” J. Appl. Phys. 46, 952–954 (1975).
  19. W. W. Chow, R. P. Schneider, Jr., J. A. Lott, and K. D. Choquette, “Wavelength dependence of the threshold in an InGaP-InAlGaP vertical cavity surface emitting laser,” Appl. Phys. Lett. 65, 135–137 (1994).
  20. R. Jin, D. Boggavarapu, G. Khitrova, H. M. Gibbs, Y. Z. Hu, S. W. Koch, and N. Peyghambarian, “Linewidth broadening factor of a microcavity semiconductor laser,” Appl. Phys. Lett. 61, 1883–1885 (1992).
  21. W. W. Chow, S. W. Koch, and M. Sargent III, Semiconductor Laser Physics (Springer-Verlag, Berlin, 1994), p. 136.
  22. P. Blood, S. Colak, and A. I. Kucharska, “Influence of broadening and high injection on GaAs-AlGaAs quantum well lasers,” IEEE J. Quantum Electron. 24, 1593–1604 (1988).
  23. M. Asada, “Intraband relaxation time in quantum well lasers,” IEEE J. Quantum Electron. 25, 2019–2026 (1989).
  24. P. Rees and P. Blood, “Implementation of spectral broadening by carrier–carrier scattering in quantum well gain-current calculations,” Semicond. Sci. Technol. 10, 1545–1554 (1995).
  25. P. Rees, F. P. Logue, J. F. Donegan, J. F. Heffernan, C. Jordan, and J. Hegarty, “Calculation of gain-current characteristics in ZnCdSe–ZnSe quantum well structures including many-body effects,” Appl. Phys. Lett. 67, 3780–3782 (1995).
  26. Y.-H. Wu, K. Ichino, Y. Kawakami, Sz. Fujita, and Sg. Fujita, “Estimation of critical thickness and band lineups in ZnCdSe/ZnSSe strained-layer system for design of carrier confinement quantum well structures,” Jpn. J. Appl. Phys. 31, 1737–1742 (1992).
  27. H. E. Gumlich, D. Theis, and D. Tschierse, “II–VI compounds,” in Numerical Data and Functional Relationships in Science and Technology, by O. Madelung, ed. Landolt-Börnstein New Series, Group III 17a (Springer-Verlag, Berlin, 1982), Chap. 3.
  28. K. Shazad, D. J. Olego, and C. G. Van de Walle, “Optical characterisation and band offsets in ZnSe-ZnSxSe1−x strained-layer superlattices,” Phys. Rev. B 38, 1417–1426 (1988).
  29. R. Cingolani, P. Prete, D. Greco, P. V. Giugno, M. Lomascolo, R. Rinaldi, L. Calcagnile, L. Vanzette, L. Sorba, and A. Fanciosi, “Exciton spectroscopy in Zn1−xCdxSe/ZnSe quantum wells,” Phys. Rev. B 51, 5176–5183 (1995).
  30. K. Kondo, M. Ukita, H. Yoshida, Y. Kishita, H. Okuyama, S. Ito, T. Ohata, K. Nakano, and A. Ishibashi, “A study of internal absorption in Zn(Cd)Se/ZnMgSSe semiconductor lasers,” J. Appl. Phys. 76, 2621–2626 (1994).
  31. M. Ukita, H. Okuyama, M. Ozawa, A. Ishibashi, K. Akimoto, and Y. Mori, “Refractive indices of ZnMgSe alloys lattice matched to GaAs,” Appl. Phys. Lett. 63, 2082–2084 (1993).
  32. G. Frankowsky, F. Steuber, V. Härle, F. Scholz, and A. Hangleiter, “Optical gain in GaInN/GaN heterostructures,” Appl. Phys. Lett. 68, 3746–3748 (1996).
  33. F. P. Logue, “Optical properties of II–VI quantum wells,” Ph.D. dissertation (University of Dublin, Dublin, 1996).
  34. C. F. Hsu, P. S. Zory, Jr., and C.-H. Wu, “Coulomb enhance-ment in InGaAs-GaAs quantum-well lasers,” IEEE J. Sel. Topics Quantum Electron. 3, 158–165 (1997).
  35. V. Kozlov, A. Salokatve, A. V. Nurmikko, D. C. Grillo, L. He, J. Han, M. Ringle, and R. L. Gunshor, “Gain characteristics of blue/green II–VI quantum well lasers,” Appl. Phys. Lett. 65, 1863–1864 (1994).
  36. J. Ding, M. Hagerott, P. Kelkar, A. V. Nurmikko, D. C. Grillo, L. He, J. Han, and R. L. Gunshor, “Role of Coulomb-correlated electron-hole pairs in ZnSe-based quantum-well diode lasers,” Phys. Rev. B 50, 5787–5790 (1994).
  37. G. Livescu, D. A. B. Miller, D. S. Chemla, M. Ramaswamy, T. Y. Chang, M. Sauer, A. C. Gossard, and J. H. English, “Free carrier and many-body effects in absorption spectra of modulation-doped quantum wells,” IEEE J. Quantum Electron. 24, 1677–1689 (1988).
  38. M. Buijs, K. Shahzad, S. Flamholtz, K. Haberern, and J. Gaines, “Carrier leakage in blue-green semiconductor lasers,” Appl. Phys. Lett. 67, 1987–1989 (1995).
  39. G. Lasher and F. Stern, “Spontaneous emission and stimulated recombination in semiconductors,” Phys. Rev. 133, A553–A563 (1964).
  40. P. R. Newbury, K. Shazad, and D. Cammack, “Stimulated emission via inelastic exciton-exciton scattering in ZnSe epilayers,” Appl. Phys. Lett. 58, 1065–1067 (1991).
  41. N. F. Mott, “The transition to a metallic state,” Philos. Mag. 6, 287–309 (1961), and references therein.
  42. P. P. Edwards and M. J. Sienko, “Universality aspects of the metal-nonmetal transition in condensed media,” Phys. Rev. B 17, 2575–2581 (1978).
  43. R. G. Ulbrich, “Dense nonequilibrium excitons: band edge absorption spectra of highly excited gallium arsenide,” in Optical Nonlinearities and Instabilities in Semiconductors, H. Haug, ed. (Academic, Boston, 1988).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited