OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 15, Iss. 4 — Apr. 1, 1998
  • pp: 1353–1361

Dynamics of novelty filtering and edge enhancement in cobalt-doped barium titanate

Pierre Mathey, Bénédicte Mazué, Pierre Jullien, and Daniel Rytz  »View Author Affiliations


JOSA B, Vol. 15, Issue 4, pp. 1353-1361 (1998)
http://dx.doi.org/10.1364/JOSAB.15.001353


View Full Text Article

Acrobat PDF (1960 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A compact photorefractive optical novelty filter is presented. Its two main components, the nonlinear photorefractive crystal and the spatial light modulator, are characterized. It is shown that, for this application, the involved BaTiO3:Co crystal is more efficient than a nominally undoped BaTiO3. It is demonstrated that the spatial light modulator alters the wave-mixing performance. The cut frequency of a cyclic event detection is measured versus the incident intensity. The agreement with previously developed theories about edge-enhancement characteristics is satisfactory.

© 1998 Optical Society of America

OCIS Codes
(160.5320) Materials : Photorefractive materials
(190.7070) Nonlinear optics : Two-wave mixing
(230.6120) Optical devices : Spatial light modulators
(260.2160) Physical optics : Energy transfer
(330.4150) Vision, color, and visual optics : Motion detection

Citation
Pierre Mathey, Bénédicte Mazué, Pierre Jullien, and Daniel Rytz, "Dynamics of novelty filtering and edge enhancement in cobalt-doped barium titanate," J. Opt. Soc. Am. B 15, 1353-1361 (1998)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-15-4-1353


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915–917 (1993).
  2. F. H. Mok, G. W. Burr, and D. Psaltis, “System metric for holographic memory system,” Opt. Lett. 21, 896–898 (1996).
  3. D. Z. Anderson, D. M. Lininger, and J. Feinberg, “Optical tracking novelty filter,” Opt. Lett. 12, 123–125 (1987).
  4. N. S. Kwong, Y. Tamita, and A. Yariv, “Optical tracking filter using transient energy coupling,” J. Opt. Soc. Am. B 5, 1788–1791 (1988).
  5. J. E. Ford, Y. Fainman, and S. H. Lee, “Time integrating interferometry using photorefractive fan out,” Opt. Lett. 13, 856–858 (1988).
  6. D. Z. Anderson and J. Feinberg, “Optical novelty filters,” IEEE J. Quantum Electron. 25, 635–647 (1989).
  7. J. A. Khoury, G. Hussain, and R. W. Eason, “Optical tracking and motion detection using photorefractive detection using photorefractive Bi12SiO20,” Opt. Commun. 71, 138–144 (1989).
  8. H. Rehn, R. Kowarschik, and K. H. Ringhofer, “Beam-fanning novelty filter with enhanced dynamic phase resolution,” Appl. Opt. 34, 4907–4911 (1995).
  9. M. Esselbach, A. Kiessling, H. Rehn, B. Fleck, and R. Kowarschik, “Transient phase measurement using a selfpumped phase-conjugate mirror as an optical-novelty filter,” J. Opt. Soc. Am. B 14, 846–851 (1997).
  10. N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I and II,” Ferroelectrics 22, 949–964 (1979).
  11. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
  12. Y. Fainman, E. Klancnik, and S. H. Lee, “Optimal coherent image amplification by two-wave coupling in photorefractive BaTiO3,” Opt. Eng. 25, 228–234 (1986).
  13. P. Mathey, P. Jullien, A. Dazzi, and B. Mazué, “Performance evaluation of a photorefractive novelty filter for motion tracking and edge enhancement,” Opt. Commun. 129, 301–310 (1996).
  14. V. Grubsky, S. MacCormack, and J. Feinberg, “All-optical three-dimensional mapping of 180° domains hidden in a BaTiO3 crystal,” Opt. Lett. 21, 6–8 (1996).
  15. F. Laeri, T. Tschudi, and J. Albers, “Coherent cw image amplifier and oscillator using two-wave interaction in a BaTiO3 crystal,” Opt. Commun. 47, 387–390 (1983).
  16. G. D. Bacher, M. P. Chiao, G. J. Dunning, M. B. Klein, and B. A. Wechsler, “Ultralong dark decay measurements in BaTiO3,” in Topical Meeting on Nonlinear Optics (Optical Society of America, Washington, D.C., 1995), paper TA2, pp. 244–246.
  17. J. Y. Chang, M. H. Garrett, P. Tayebati, H. P. Jenssen, and C. Warde, “Light-induced dark decay and sublinear intensity dependence of the response time in cobalt-doped barium titanate,” J. Opt. Soc. Am. B 12, 248–254 (1995).
  18. S. Ducharme and J. Feinberg, “Speed of the photorefractive effect in a BaTiO3 single crystal,” J. Appl. Phys. 56, 839–842 (1984).
  19. L. Holtmann, “A model for the nonlinear photoconductivity of BaTiO3,” Phys. Status Solidi A 113, 89–93 (1989).
  20. G. A. Brost, R. A. Motes, and J. R. Rotge, “Intensity-dependent absorption and photorefractive effects in barium titanate,” J. Opt. Soc. Am. B 5, 1879–1885 (1988).
  21. D. Rytz, B. A. Wechsler, M. H. Garrett, C. C. Nelson, and R. N. Schwartz, “Photorefractive properties of BaTiO3:Co,” J. Opt. Soc. Am. B 7, 2245–2254 (1990).
  22. M. Cronin-Golomb, A. M. Biernacki, C. Lin, and H. Kong, “Photorefractive time differentiation of coherent optical images,” Opt. Lett. 12, 1029–1031 (1987).
  23. M. Sedlatschek, T. Rauch, C. Denz, and T. Tschudi, “Generalized theory of the resolution of object tracking novelty filters,” Opt. Commun. 116, 25–30 (1995).
  24. D. T. H. Liu and L. J. Cheng, “Resolution of a target-tracking optical novelty filter,” Opt. Eng. 30, 571–576 (1991).
  25. B. Jähne, Digital Image Processing (Springer-Verlag, Berlin, 1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited